29,278 research outputs found

    Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse

    Full text link
    We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra, final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are detectable by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan. 2004). Revised version: Corrected typos and minor mistakes in text and references. Minor additions to the text according to the referee's suggestions, conclusions unchange

    A statistical analysis of product prices in online markets

    Full text link
    We empirically investigate fluctuations in product prices in online markets by using a tick-by-tick price data collected from a Japanese price comparison site, and find some similarities and differences between product and asset prices. The average price of a product across e-retailers behaves almost like a random walk, although the probability of price increase/decrease is higher conditional on the multiple events of price increase/decrease. This is quite similar to the property reported by previous studies about asset prices. However, we fail to find a long memory property in the volatility of product price changes. Also, we find that the price change distribution for product prices is close to an exponential distribution, rather than a power law distribution. These two findings are in a sharp contrast with the previous results regarding asset prices. We propose an interpretation that these differences may stem from the absence of speculative activities in product markets; namely, e-retailers seldom repeat buy and sell of a product, unlike traders in asset markets.Comment: 5 pages, 5 figures, 1 table, proceedings of APFA

    Core-Collapse Simulations of Rotating Stars

    Get PDF
    We present the results from a series of two-dimensional core-collapse simulations using a rotating progenitor star. We find that the convection in these simulations is less vigorous because a) rotation weakens the core bounce which seeds the neutrino-driven convection and b) the angular momentum profile in the rotating core stabilizes against convection. The limited convection leads to explosions which occur later and are weaker than the explosions produced from the collapse of non-rotating cores. However, because the convection is constrained to the polar regions, when the explosion occurs, it is stronger along the polar axis. This asymmetric explosion can explain the polarization measurements of core-collapse supernovae. These asymmetries also provide a natural mechanism to mix the products of nucleosynthesis out into the helium and hydrogen layers of the star. We also discuss the role the collapse of these rotating stars play on the generation of magnetic fields and neutron star kicks. Given a range of progenitor rotation periods, we predict a range of supernova energies for the same progenitor mass. The critical mass for black hole formation also depends upon the rotation speed of the progenitor.Comment: 16 pages text + 13 figures, submitted to Ap

    Nucleosynthesis and Clump Formation in a Core Collapse Supernova

    Get PDF
    High-resolution two-dimensional simulations were performed for the first five minutes of the evolution of a core collapse supernova explosion in a 15 solar mass blue supergiant progenitor. The computations start shortly after bounce and include neutrino-matter interactions by using a light-bulb approximation for the neutrinos, and a treatment of the nucleosynthesis due to explosive silicon and oxygen burning. We find that newly formed iron-group elements are distributed throughout the inner half of the helium core by Rayleigh-Taylor instabilities at the Ni+Si/O and C+O/He interfaces, seeded by convective overturn during the early stages of the explosion. Fast moving nickel mushrooms with velocities up to about 4000 km/s are observed. This offers a natural explanation for the mixing required in light curve and spectral synthesis studies of Type Ib explosions. A continuation of the calculations to later times, however, indicates that the iron velocities observed in SN 1987 A cannot be reproduced because of a strong deceleration of the clumps in the dense shell left behind by the shock at the He/H interface.Comment: 8 pages, LaTeX, 2 postscript figures, 2 gif figures, shortened and slightly revised text and references, accepted by ApJ Letter

    Explosive Nucleosynthesis in Axisymmetrically Deformed Type II Supernovae

    Get PDF
    Explosive nucleosynthesis under the axisymmetric explosion in Type II supernova has been performed by means of two dimensional hydrodynamical calculations. We have compared the results with the observations of SN 1987A. Our chief findings are as follows: (1) 44Ti^{44}Ti is synthesized so much as to explain the tail of the bolometric light curve of SN 1987A. We think this is because the alpha-rich freezeout takes place more actively under the axisymmetric explosion. (2) 57Ni^{57}Ni and 58Ni^{58}Ni tend to be overproduced compared with the observations. However, this tendency relies strongly on the progenitor's model. We have also compared the abundance of each element in the mass number range A=16−73A= 16-73 with the solar values. We have found three outstanding features. (1) For the nuclei in the range A=16−40A=16-40, their abundances are insensitive to the initial form of the shock wave. This insensitivity is favored since the spherical calculations thus far can explain the solar system abundances in this mass range. (2) There is an enhancement around A=45 in the axisymmetric explosion compared with the spherical explosion fairly well. In particular, 44Ca^{44}Ca, which is underproduced in the present spherical calculations, is enhanced significantly. (3) In addition, there is an enhancement around A=65. This tendency does not rely on the form of the mass cut but of the initial shock wave. This enhancement may be the problem of the overproduction in this mass range, although this effect would be relatively small since Type I supernovae are chiefly responsible for this mass number range.Comment: 32 pages, 12 figures, LaTe

    The Core-Collapse Supernova with "Non-Uniform" Magnetic Fields

    Full text link
    We perform two-dimensional numerical simulations on the core-collapse of a massive star with strong magnetic fields and differential rotations using a numerical code ZEUS-2D. Changing field configurations and laws of differential rotation parametrically, we compute 14 models and investigate effects of these parameters on the dynamics. In our models, we do not solve the neutrino transport and instead employ a phenomenological parametric EOS that takes into account the neutrino emissions. As a result of the calculations, we find that the field configuration plays a significant role in the dynamics of the core if the initial magnetic field is large enough. Models with initially concentrated fields produce more energetic explosions and more prolate shock waves than the uniform field. Quadrapole-like fields produce remarkably collimated and fast jet, which might be important for gamma-ray bursts(GRB). The Lorentz forces exerted in the region where the plasma-beta is less than unity are responsible for these dynamics. The pure toroidal field, on the other hand, does not lead to any explosion or matter ejection. This suggests the presupernova models of Heger et al.(2003), in which toroidal fields are predominant, is disadvantageous for the magnetorotation-induced supernova considered here. Models with initially weak magnetic fields do not lead to explosion or matter ejection, either. In these models magnetic fields play no role as they do not grow on the timescale considered in this paper so that the magnetic pressure could be comparable to the matter pressure. This is because the exponential field growth as expected in MRI is not seen in our models. The magnetic field is amplified mainly by field-compression and field-wrapping in our simulations.Comment: 24 pages, 5 figures, ApJ in press, typos correcte

    Gamma-Ray Lines from Asymmetric Supernovae

    Full text link
    We present 3-dimensional SPH simulations of supernova explosions from 100 seconds to 1 year after core-bounce. By extending our modelling efforts to a 3-dimensional hydrodynamics treatment, we are able to investigate the effects of explosion asymmetries on mixing and gamma-ray line emergence in supernovae. A series of initial explosion conditions are implemented, including jet-like and equatorial asymmetries of varying degree. For comparison, symmetric explosion models are also calculated. A series of time slices from the explosion evolution are further analyzed using a 3-dimensional Monte Carlo gamma-ray transport code. The emergent hard X- and gamma-ray spectra are calculated as a function of both viewing angle and time, including trends in the gamma-ray line profiles. We find significant differences in the velocity distribution of radioactive nickel between the symmetric and asymmetric explosion models. The effects of this spatial distribution change are reflected in the overall high energy spectrum, as well as in the individual gamma-ray line profiles.Comment: 32 pages, 14 figures, LAUR-02-6114, http://qso.lanl.gov/~clf "Clumping Asymmetry" section revise

    Semiclassical theory of magnetotransport through a chaotic quantum well

    Full text link
    We develop a quantitative semiclassical formula for the resonant tunneling current through a quantum well in a tilted magnetic field. It is shown that the current depends only on periodic orbits within the quantum well. The theory explains the puzzling evolution of the tunneling spectra near a tilt angle of 30∘30^{\circ} as arising from an exchange bifurcation of the relevant periodic orbits.Comment: 4 pages, RevTeX, epsf, 2 PostScript Figures (1 with color

    Very Long Baseline Array observations of the Intraday Variable source J1128+592

    Full text link
    Short time-scale flux density variations of flat spectrum radio sources are often explained by the scattering of radio waves in the turbulent, ionized Interstellar Matter of the Milky Way. One of the most convincing observational arguments in favor of this is the annual modulation of the variability time-scale caused by the Earth orbital motion around the Sun. J1128+592 is an IDV source with a possible annual modulation in its variability time-scale. We observed the source in 6 epochs with the VLBA at 5, 8 and 15 GHz in total intensity and polarization. The VLBA observations revealed an east-west oriented core-jet structure. Its position angle agrees with the angle of anisotropy derived from the annual modulation model. No significant long-term structural changes were observed with VLBI on mas-scales, however, compared to archival data, the VLBI core size is expanded. This expansion offers a possible explanation to the observed decrease of the strength of IDV. VLBI polarimetry revealed significant changes in the electric vector position angle and Rotation Measure of the core and jet. Part of the observed RM variability could be attributed to a scattering screen (37 pc distance), which covers the source (core and jet) and which may be responsible for the IDV. Superposition of polarized sub-components below the angular resolution limit may affect the observed RM as well.Comment: accepted for A&A (11 pages, 11 figures

    Non-Gaussian statistics and extreme waves in a nonlinear optical cavity

    Full text link
    A unidirectional optical oscillator is built by using a liquid crystal light-valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents a complex spatio-temporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field
    • 

    corecore