13 research outputs found

    Construction of a Baculovirus-Silkworm Multigene Expression System and Its Application on Producing Virus-Like Particles

    Get PDF
    A new baculovirus-silkworm multigene expression system named Bombyx mori MultiBac is developed and described here, by which multiple expression cassettes can be introduced into the Bombyx mori nuclear polyhedrosis virus (BmNPV) genome efficiently. The system consists of three donor vectors (pCTdual, pRADM and pUCDMIG) and an invasive diaminopimelate (DAP) auxotrophic recipient E. coli containing BmNPV-Bacmid (BmBacmid) with a homologous recombination region, an attTn7 site and a loxp site. Two genes carried by pCTdual are firstly inserted into BmBacmid by homologous recombination, while the other eight genes in pRADM and pUCDMIG are introduced into BmBacmid through Tn7 transposition and cre-loxp recombination. Then the invasive and DAP auxotrophic E. coli carrying recombinant BmBacmid is directly injected into silkworm for expressing heterologous genes in larvae or pupae. Three structural genes of rotavirus and three fluorescent genes have been simultaneously expressed in silkworm larvae using our new system, resulting in the formation of virus-like particles (VLPs) of rotavirus and the color change of larvae. The VLPs were purified from hemolymph by ultracentrifugation using CsCl gradients, with a yield of 12.7 µg per larva. For the great capacity of foreign genes and the low cost of feeding silkworm, this high efficient BmMultiBac expression system provides a suitable platform to produce VLPs or protein complexes

    Silkworm expression system as a platform technology in life science

    Get PDF
    Many recombinant proteins have been successfully produced in silkworm larvae or pupae and used for academic and industrial purposes. Several recombinant proteins produced by silkworms have already been commercialized. However, construction of a recombinant baculovirus containing a gene of interest requires tedious and troublesome steps and takes a long time (3–6 months). The recent development of a bacmid, Escherichia coli and Bombyx mori shuttle vector, has eliminated the conventional tedious procedures required to identify and isolate recombinant viruses. Several technical improvements, including a cysteine protease or chitinase deletion bacmid and chaperone-assisted expression and coexpression, have led to significantly increased protein yields and reduced costs for large-scale production. Terminal N-acetyl glucosamine and galactose residues were found in the N-glycan structures produced by silkworms, which are different from those generated by insect cells. Genomic elucidation of silkworm has opened a new chapter in utilization of silkworm. Transgenic silkworm technology provides a stable production of recombinant protein. Baculovirus surface display expression is one of the low-cost approaches toward silkworm larvae-derived recombinant subunit vaccines. The expression of pharmaceutically relevant proteins, including cell/viral surface proteins, membrane proteins, and guanine nucleotide-binding protein (G protein) coupled receptors, using silkworm larvae or cocoons has become very attractive. Silkworm biotechnology is an innovative and easy approach to achieve high protein expression levels and is a very promising platform technology in the field of life science. Like the “Silkroad,” we expect that the “Bioroad” from Asia to Europe will be established by the silkworm expression system
    corecore