394 research outputs found
Kinematic Constraints on Formation of Bound States of Cosmic Strings - Field Theoretical Approach
Superstring theory predicts the potential formation of string networks with
bound states ending in junctions. Kinematic constraints for junction formation
have been derived within the Nambu-Goto thin string approximation. Here we test
these constraints numerically in the framework of the Abelian-Higgs model in
the Type-I regime and report on good agreement with the analytical predictions.
We also demonstrate that strings can effectively pass through each other when
they meet at speeds slightly above the critical velocity permitting bound state
formation. This is due to reconnection effects that are beyond the scope of the
Nambu-Goto approximation.Comment: 6 pages, 12 eps figures - matches the published versio
Exploiting Cross Correlations and Joint Analyses
In this report, we present a wide variety of ways in which information from
multiple probes of dark energy may be combined to obtain additional information
not accessible when they are considered separately. Fundamentally, because all
major probes are affected by the underlying distribution of matter in the
regions studied, there exist covariances between them that can provide
information on cosmology. Combining multiple probes allows for more accurate
(less contaminated by systematics) and more precise (since there is
cosmological information encoded in cross-correlation statistics) measurements
of dark energy. The potential of cross-correlation methods is only beginning to
be realized. By bringing in information from other wavelengths, the
capabilities of the existing probes of dark energy can be enhanced and
systematic effects can be mitigated further. We present a mixture of work in
progress and suggestions for future scientific efforts. Given the scope of
future dark energy experiments, the greatest gains may only be realized with
more coordination and cooperation between multiple project teams; we recommend
that this interchange should begin sooner, rather than later, to maximize
scientific gains.Comment: Report from the "Dark Energy and CMB" working group for the American
Physical Society's Division of Particles and Fields long-term planning
exercise ("Snowmass"
Modified Chaplygin Gas and Solvable F-essence Cosmologies
The Modified Chaplygin Gas (MCG) model belongs to the class of a unified
models of dark energy and dark matter. In this paper, we have modeled MCG in
the framework of f-essence cosmology. By constructing an equation connecting
the MCG and the f-essence, we solve it to obtain explicitly the pressure and
energy density of MCG. As special cases, we obtain both positive and negative
pressure solutions for suitable choices of free parameters. We also calculate
the state parameter which describes the phantom crossing.Comment: 12 pages, (Invited Review), accepted for publication in "Astrophysics
and Space Science" DOI: 10.1007/s10509-011-0870-
Plasma Apolipoprotein CI and CIII Levels Are Associated With Increased Plasma Triglyceride Levels and Decreased Fat Mass in Men With the Metabolic Syndrome
OBJECTIVE—To determine whether, in accordance with observations in mouse models, high concentrations of the lipoprotein lipase inhibitors apolipoprotein (Apo) CI and ApoCIII are associated with increased triglyceride concentrations and decreased fat mass in men with the metabolic syndrome
Plasma Apolipoprotein CI and CIII Levels Are Associated With Increased Plasma Triglyceride Levels and Decreased Fat Mass in Men With the Metabolic Syndrome
OBJECTIVE—To determine whether, in accordance with observations in mouse models, high concentrations of the lipoprotein lipase inhibitors apolipoprotein (Apo) CI and ApoCIII are associated with increased triglyceride concentrations and decreased fat mass in men with the metabolic syndrome
Disformally self-tuning gravity
We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds
Pure kinetic k-essence as the cosmic speed-up
In this paper, we consider three types of k-essence. These k-essence models
were presented in the parametric forms. The exact analytical solutions of the
corresponding equations of motion are found. It is shown that these k-essence
models for the presented solutions can give rise to cosmic acceleration.Comment: 10 pages, typos corrected, main results remain the same, minor
changes to match IJTP accepted versio
Einstein-Cartan gravity with scalar-fermion interactions
In this paper, we have considered the g-essence and its particular cases,
k-essence and f-essence, within the framework of the Einstein-Cartan theory. We
have shown that a single fermionic field can give rise to the accelerated
expansion within the Einstein-Cartan theory. The exact analytical solution of
the Einstein-Cartan-Dirac equations is found. This solution describes the
accelerated expansion of the Universe with the equation of state parameter
as in the case of CDM model.Comment: 6 pages, title is change
Reconstruction of the equation of state for the cyclic universes in homogeneous and isotropic cosmology
We study the cosmological evolutions of the equation of state (EoS) for the
universe in the homogeneous and isotropic
Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) space-time. In particular, we
reconstruct the cyclic universes by using the Weierstrass and Jacobian elliptic
functions. It is explicitly illustrated that in several models the universe
always stays in the non-phantom (quintessence) phase, whereas there also exist
models in which the crossing of the phantom divide can be realized in the
reconstructed cyclic universes.Comment: 29 pages, 8 figures, version accepted for publication in Central
European Journal of Physic
- …