237 research outputs found

    Tea, Coffee, and Milk Consumption and Colorectal Cancer Risk

    Get PDF
    Background: Data regarding the effects of tea, coffee, and milk on the risk of colorectal cancer are inconsistent. We investigated associations of tea, coffee, and milk consumption with colorectal cancer risk and attempted to determine if these exposures were differentially associated with the risks of proximal colon, distal colon, and rectal cancers. Methods: Data from 854 incident cases and 948 controls were analyzed in a case-control study of colorectal cancer in Western Australia during 2005–07. Multivariable logistic regression was used to analyze the associations of black tea (with and without milk), green tea, herbal tea, hot coffee, iced coffee, and milk with colorectal cancer. Results: Consumption of 1 or more cups of herbal tea per week was associated with a significantly decreased risk of distal colon cancer (adjusted odds ratio, 0.37; 95% CI, 0.16–0.82; P[subscript]Trend = 0.044), and consumption of 1 or more cups of iced coffee per week was associated with increased risk of rectal cancer (adjusted odds ratio, 1.52; 95% CI, 0.91–2.54; P[subscript]Trend = 0.004). Neither herbal tea nor iced coffee was associated with the risk of proximal colon cancer. Hot coffee was associated with a possible increased risk of distal colon cancer. Black tea (with or without milk), green tea, decaffeinated coffee, and milk were not significantly associated with colorectal cancer risk. Conclusions: Consumption of herbal tea was associated with reduced risk of distal colon cancer, and consumption of iced coffee was associated with increased rectal cancer risk

    Schelde-estuarium

    Get PDF

    A link between eumelanism and calcium physiology in the barn owl.

    Get PDF
    In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium

    A link between eumelanism and calcium physiology in the barn owl.

    Get PDF
    In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium
    corecore