49,781 research outputs found

    Chirality in Liquid Crystals: from Microscopic Origins to Macroscopic Structure

    Get PDF
    Molecular chirality leads to a wonderful variety of equilibrium structures, from the simple cholesteric phase to the twist-grain-boundary phases, and it is responsible for interesting and technologically important materials like ferroelectric liquid crystals. This paper will review some recent advances in our understanding of the connection between the chiral geometry of individual molecules and the important phenomenological parameters that determine macroscopic chiral structure. It will then consider chiral structure in columnar systems and propose a new equilibrium phase consisting of a regular lattice of twisted ropes.Comment: 20 pages with 6 epsf figure

    Strong eigenfunction correlations near the Anderson localization transition

    Full text link
    We study overlap of two different eigenfunctions as compared with self-overlap in the framework of an infinite-dimensional version of the disordered tight-binding model. Despite a very sparse structure of the eigenstates in the vicinity of Anderson transition their mutual overlap is still found to be of the same order as self-overlap as long as energy separation is smaller than a critical value. The latter fact explains robustness of the Wigner-Dyson level statistics everywhere in the phase of extended states. The same picture is expected to hold for usual d-dimensional conductors, ensuring the sβs^{\beta} form of the level repulsion at critical point.Comment: 4 pages, RevTe

    A two component jet model for the X-ray afterglow flat segment in short GRB 051221A

    Full text link
    In the double neutron star merger or neutron star-black hole merger model for short GRBs, the outflow launched might be mildly magnetized and neutron rich. The magnetized neutron-rich outflow will be accelerated by the magnetic and thermal pressure and may form a two component jet finally, as suggested by Vlahakis, Peng & K\"{o}nigl (2003). We show in this work that such a two component jet model could well reproduce the multi-wavelength afterglow lightcurves, in particular the X-ray flat segment, of short GRB 051221A. In this model, the central engine need not to be active much longer than the prompt γ\gamma-ray emission.Comment: 11 pages, 2 figure; Accepted for publication by ApJ

    Rapid collapse of spin waves in non-uniform phases of the second Landau level

    Full text link
    The spin degree of freedom in quantum phases of the second Landau level is probed by resonant light scattering. The long wavelength spin wave, which monitors the degree of spin polarization, is at the Zeeman energy in the fully spin-polarized state at ν\nu=3. At lower filling factors the intensity of the Zeeman mode collapses indicating loss of polarization. A novel continuum of low-lying excitations emerges that dominates near ν\nu=8/3 and ν\nu=5/2. Resonant Rayleigh scattering reveals that quantum fluids for ν<3\nu<3 break up into robust domain structures. While the state at ν\nu=5/2 is considered to be fully polarized, these results reveal unprecedented roles for spin degrees of freedom.Comment: 4 pages, 5 figure

    Spitzer 70 Micron Source Counts in GOODS-North

    Get PDF
    We present ultradeep Spitzer 70 μm observations of GOODS-North (Great Observatories Origins Deep Survey). For the first time, the turnover in the 70 μm Euclidean-normalized differential source counts is observed. We derive source counts down to a flux density of 1.2 mJy. From the measured source counts and fluctuation analysis, we estimate a power-law approximation of the faint 70 μm source counts of dN/dS ∝ S^−1.6, consistent with that observed for the faint 24 μm sources. An extrapolation of the 70 μm source counts to zero flux density implies a total extragalactic background light (EBL) of 7.4 ± 1.9 nW m^−2 sr^−1. The source counts above 1.2 mJy account for about 60% of the estimated EBL. From fluctuation analysis, we derive a photometric confusion level of σc = 0.30 ± 0.15 mJy (q = 5) for the Spitzer 70 μm band

    Spontaneous Relaxation of a Charge Qubit under Electrical Measurement

    Full text link
    In this work we first derive a generalized conditional master equation for quantum measurement by a mesoscopic detector, then study the readout characteristics of qubit measurement where a number of new features are found. The work would in particular highlight the qubit spontaneous relaxation effect induced by the measurement itself rather than an external thermal bath.Comment: 4 pages, 2 figures; an error in Eq.(8) is correcte

    Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    Full text link
    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1n+1 agents via the control of the others in a network. It will be shown that the outcomes in the cases that nn is odd or it is even are different in principle as the receiver has to perform a controlled-not operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubits approaches the maximal value.Comment: 9 pages, 3 figures; the revised version published in Physical Review A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is adde

    NMR Search for the Spin Nematic State in LaFeAsO Single Crystal

    Full text link
    We report a 75-As single crystal NMR investigation of LaFeAsO, the parent phase of a pnictide high Tc superconductor. We demonstrate that spin dynamics develop a strong two-fold anisotropy within each orthorhombic domain below the tetragonal-orthorhombic structural phase transition at T[TO]~156 K. This intermediate state with a dynamical breaking of the rotational symmetry freezes progressively into a spin density wave (SDW) below T[SDW]~142 K. Our findings are consistent with the presence of a spin nematic state below T[TO] with an incipient magnetic order.Comment: Revised manuscript accepted for publication in Phys. Rev. Let
    corecore