8 research outputs found
Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach
We investigate the distribution of gravitational energy on the spacetime of a
Schwarzschild black hole immersed in a cosmic magnetic field. This is done in
the context of the {\it Teleparallel Equivalent of General Relativity}, which
is an alternative geometrical formulation of General Relativity, where gravity
is describe by a spacetime endowed with torsion, rather than curvature, with
the fundamental field variables being tetrads. We calculate the energy enclosed
by a two-surface of constant radius - in particular, the energy enclosed by the
event horizon of the black hole. In this case we find that the magnetic field
has the effect of increasing the gravitational energy as compared to the vacuum
Schwarzschild case. We also compute the energy (i) in the weak magnetic field
limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence
of the black hole. In all cases our results are consistent with what should be
expected on physical grounds.Comment: version to match the one to be published on General Relativity and
Gravitatio