121 research outputs found
Storage of RF photons in minimal conditions
We investigate the minimal conditions to store coherently a RF pulse in a
material medium. We choose a commercial quartz as memory support because it is
a widely available component with a high Q-factor. Pulse storage is obtained by
varying dynamically the light-matter coupling with an analog switch. This
parametric driving of the quartz dynamics can be alternatively interpreted as a
stopped light experiment. We obtain an efficiency of 26%, a storage time of
209s and a time-to-bandwidth product of 98 by optimizing the pulse
temporal shape. The coherent character of the storage is demonstrated. Our goal
is to connect different types of memories in the RF and optical domain for
quantum information processing. Our motivation is essentially fundamental
Efficiency optimization for Atomic Frequency Comb storage
We study the efficiency of the Atomic Frequency Comb storage protocol. We
show that for a given optical depth, the preparation procedure can be optimize
to significantly improve the retrieval. Our prediction is well supported by the
experimental implementation of the protocol in a \TMYAG crystal. We observe a
net gain in efficiency from 10% to 17% by applying the optimized preparation
procedure. In the perspective of high bandwidth storage, we investigate the
protocol under different magnetic fields. We analyze the effect of the Zeeman
and superhyperfine interaction
Analytic treatment of CRIB Quantum Memories for Light using Two-level Atoms
It has recently been discovered that the optical analogue of a gradient echo
in an optically thick material could form the basis of a optical memory that is
both completely efficient and noise free. Here we present analytical
calculation showing this is the case. There is close analogy between the
operation of the memory and an optical system with two beam splitters. We can
use this analogy to calculate efficiencies as a function of optical depth for a
number of quantum memory schemes based on controlled inhomogeneous broadening.
In particular we show that multiple switching leads to a net 100% retrieval
efficiency for the optical gradient echo even in the optically thin case.Comment: 10 page
Optical study of the anisotropic erbium spin flip-flop dynamics
We investigate the erbium flip-flop dynamics as a limiting factor of the
electron spin lifetime and more generally as an indirect source of decoherence
in rare-earth doped insulators. Despite the random isotropic arrangement of
dopants in the host crystal, the dipolar interaction strongly depends on the
magnetic field orientation following the strong anisotropy of the -factor.
In Er:YSiO, we observe by transient optical spectroscopy a three
orders of magnitude variation of the erbium flip-flop rate (10ppm dopant
concentration). The measurements in two different samples, with 10ppm and 50ppm
concentrations, are well-supported by our analytic modeling of the dipolar
coupling between identical spins with an anisotropic -tensor. The model can
be applied to other rare-earth doped materials. We extrapolate the calculation
to Er:CaWO, Er:LiNbO and Nd:YSiO at
different concentrations
Revival of Silenced Echo and Quantum Memory for Light
We propose an original quantum memory protocol. It belongs to the class of
rephasing processes and is closely related to two-pulse photon echo. It is
known that the strong population inversion produced by the rephasing pulse
prevents the plain two-pulse photon echo from serving as a quantum memory
scheme. Indeed gain and spontaneous emission generate prohibitive noise. A
second -pulse can be used to simultaneously reverse the atomic phase and
bring the atoms back into the ground state. Then a secondary echo is radiated
from a non-inverted medium, avoiding contamination by gain and spontaneous
emission noise. However, one must kill the primary echo, in order to preserve
all the information for the secondary signal. In the present work, spatial
phase mismatching is used to silence the standard two-pulse echo. An
experimental demonstration is presented.Comment: 13 pages, 6 figure
Optical measurement of heteronuclear cross-relaxation interactions in Tm:YAG
We investigate cross-relaxation interactions between Tm and Al in Tm:YAG
using two optical methods: spectral holeburning and stimulated echoes. These
interactions lead to a reduction in the hyperfine lifetime at magnetic fields
that bring the Tm hyperfine transition into resonance with an Al transition. We
develop models for measured echo decay curves and holeburning spectra near a
resonance, which are used to show that the Tm-Al interaction has a resonance
width of 10~kHz and reduces the hyperfine lifetime to 0.5 ms. The antihole
structure is consistent with an interaction dominated by the Al nearest
neighbors at 3.0 Angstroms, with some contribution from the next nearest
neighbors at 3.6 Angstroms.Comment: 13 pages, 9 figure
Superhyperfine induced photon-echo collapse of erbium in YSiO
We investigate the decoherence of Er in YSiO at low magnetic
fields using the photon-echo technique. We reproduce accurately a variety of
the decay curves with a unique coherence time by considering the so-called
superhyperfine modulation induced by a large number of neighbouring spins.
There is no need to invoke any characteristic time of the spin fluctuations to
reproduce very different decay curves. The number of involved nuclei increases
when the magnetic is lowered. The experiment is compared with a model
associating 100 surrounding ions with their exact positions in the crystal
frame. We also derive an approximate spherical model (angular averaging) to
interpret the main feature the observed decay curves close to zero-field
Quantum interference of electromagnetic fields from remote quantum memories
We observe quantum, Hong-Ou-Mandel, interference of fields produced by two
remote atomic memories. High-visibility interference is obtained by utilizing
the finite atomic memory time in four-photon delayed coincidence measurements.
Interference of fields from remote atomic memories is a crucial element in
protocols for scalable generation of multi-node remote qubit entanglement.Comment: 4 pages, 3 figure
Entanglement of remote atomic qubits
We report observations of entanglement of two remote atomic qubits, achieved
by generating an entangled state of an atomic qubit and a single photon at Site
A, transmitting the photon to Site B in an adjacent laboratory through an
optical fiber, and converting the photon into an atomic qubit. Entanglement of
the two remote atomic qubits is inferred by performing, locally, quantum state
transfer of each of the atomic qubits onto a photonic qubit and subsequent
measurement of polarization correlations in violation of the Bell inequality
|S| <2. We experimentally determine S =2.16 +/- 0.03. Entanglement of two
remote atomic qubits, each qubit consisting of two independent spin wave
excitations, and reversible, coherent transfer of entanglement between matter
and light, represent important advances in quantum information science.Comment: 5 pages, 3 figure
- …