37,145 research outputs found

    Low-Lying Dirac Eigenmodes, Topological Charge Fluctuations and the Instanton Liquid Model

    Full text link
    The local structure of low-lying eigenmodes of the overlap Dirac operator is studied. It is found that these modes cannot be described as linear combinations of 't Hooft "would-be" zeromodes associated with instanton excitations that underly the Instanton Liquid Model. This implies that the instanton liquid scenario for spontaneous chiral symmetry breaking in QCD is not accurate. More generally, our data suggests that the vacuum fluctuations of topological charge are not effectively dominated by localized lumps of unit charge with which the topological "would-be" zeromodes could be associated.Comment: Presented by I. Horvath at the NATO Advanced Research Workshop "Confinement, Topology, and other Non-Perturbative Aspects of QCD", January 21-27, 2002, Stara Lesna, Slovakia. 12 pages, 6 figures, uses crckapb.st

    Microfluidic-SANS: flow processing of complex fluids

    Get PDF
    Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background ([Image: see text]), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 Όm, with beam footprint of 500 Όm diameter, was successfully obtained in the scattering vector range 0.01–0.3 Å(−1), corresponding to real space dimensions of [Image: see text]. We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D(2)O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter

    Cerebellar Morphometry and Cognition in the Context of Chronic Alcohol Consumption and Cigarette Smoking.

    Get PDF
    BackgroundCerebellar atrophy (especially involving the superior-anterior cerebellar vermis) is among the most salient and clinically significant effects of chronic hazardous alcohol consumption on brain structure. Smaller cerebellar volumes are also associated with chronic cigarette smoking. The present study investigated effects of both chronic alcohol consumption and cigarette smoking on cerebellar structure and its relation to performance on select cognitive/behavioral tasks.MethodsUsing T1-weighted Magnetic Resonance Images (MRIs), the Cerebellar Analysis Tool Kit segmented the cerebellum into bilateral hemispheres and 3 vermis parcels from 4 participant groups: smoking (s) and nonsmoking (ns) abstinent alcohol-dependent treatment seekers (ALC) and controls (CON) (i.e., sALC, nsALC, sCON, and nsCON). Cognitive and behavioral data were also obtained.ResultsWe found detrimental effects of chronic drinking on all cerebellar structural measures in ALC participants, with largest reductions seen in vermis areas. Furthermore, both smoking groups had smaller volumes of cerebellar hemispheres but not vermis areas compared to their nonsmoking counterparts. In exploratory analyses, smaller cerebellar volumes were related to lower measures of intelligence. In sCON, but not sALC, greater smoking severity was related to smaller cerebellar volume and smaller superior-anterior vermis area. In sALC, greater abstinence duration was associated with larger cerebellar and superior-anterior vermis areas, suggesting some recovery with abstinence.ConclusionsOur results show that both smoking and alcohol status are associated with smaller cerebellar structural measurements, with vermal areas more vulnerable to chronic alcohol consumption and less affected by chronic smoking. These morphometric cerebellar deficits were also associated with lower intelligence and related to duration of abstinence in sALC only

    Coupled symplectic maps as models for subdiffusive processes in disordered Hamiltonian lattices

    Get PDF
    © 2015 IMACS We investigate dynamically and statistically diffusive motion in a chain of linearly coupled 2-dimensional symplectic McMillan maps and find evidence of subdiffusion in weakly and strongly chaotic regimes when all maps of the chain possess a saddle point at the origin and the central map is initially excited. In the case of weak coupling, there is either absence of diffusion or subdiffusion with q > 1-Gaussian probability distributions, characterizing weak chaos. However, for large enough coupling and already moderate number of maps, the system exhibits strongly chaotic (q≈1) subdiffusive behavior, reminiscent of the subdiffusive energy spreading observed in a disordered Klein–Gordon Hamiltonian. Our results provide evidence that coupled symplectic maps can exhibit physical properties similar to those of disordered Hamiltonian systems, even though the local dynamics in the two cases is significantly different

    Nanoscale ion sequestration to determine the polarity selectivity of ion conductance in carriers and channels

    Full text link
    © 2014 American Chemical Society. The nanoscale spacing between a tethered lipid bilayer membrane (tBLM) and its supporting gold electrode can be utilized to determine the polarity selectivity of the conduction of ion channels and ion carriers embedded in a membrane. The technique relies upon a bias voltage sequestering or eliminating ions, of a particular polarity, into or out of the aqueous electrolyte region between the gold electrode and the tethered membrane. A demonstration is given, using ac swept frequency impedance spectrometry, of the bias polarity dependence of the ionophore conductance of gramicidin A, a cationic selective channel, and valinomycin, a potassium ion selective carrier. We further use pulsed amperometry to show that the intrinsic voltage dependence of the ion conduction is actually selective of the polarity of the transported ion and not simply of the direction of the ionic current flow

    Wormhole geometries in modified teleparallel gravity and the energy conditions

    Get PDF
    In this work, we explore the possibility that static and spherically symmetric traversable wormhole geometries are supported by modified teleparallel gravity or f(T) gravity, where T is the torsion scalar. Considering the field equations with an off-diagonal tetrad, a plethora of asymptotically flat exact solutions are found, which satisfy the weak and the null energy conditions at the throat and its vicinity. More specifically, considering T=0, we find the general conditions for a wormhole satisfying the energy conditions at the throat and present specific examples that satisfy the energy conditions throughout the spacetime. As a consistency check, we also verify that in the teleparallel equivalent of general relativity, i.e., f(T)=T, one regains the standard general relativistic field equations for wormhole physics. Furthermore, considering specific choices for the f(T) form and for the redshift and shape functions, several solutions of wormhole geometries are found that satisfy the energy conditions at the throat and its neighborhood. As in their general relativistic counterparts, these f(T) wormhole geometries present far-reaching physical and cosmological implications, such as being theoretically useful as shortcuts in spacetime and for inducing closed timelike curves, possibly violating causality. © 2012 American Physical Society.published_or_final_versio

    Conformally symmetric traversable wormholes

    Get PDF
    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the "volume integral quantifier," it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced. © 2007 The American Physical Society.link_to_subscribed_fulltextpublished_or_final_versio

    Cross-contamination explains "inter- and intraspecific horizontal genetic transfers" between asexual bdelloid rotifers

    Get PDF
    A few metazoan lineages are thought to have persisted for millions of years without sexual reproduction. If so, they would offer important clues to the evolutionary paradox of sex itself [1, 2]. Most "ancient asexuals" are subject to ongoing doubt because extant populations continue to invest 17 in males [3–9]. However, males are famously unknown in bdelloid rotifers, a class of microscopic invertebrates comprising hundreds of species [10–12]. Bdelloid genomes have acquired an unusually high proportion of genes from non-metazoans via horizontal transfer [13–17]. This well-substantiated finding has invited speculation [13] that homologous horizontal transfer between bdelloid individuals also may occur, perhaps even "replacing" sex [14]. In 2016, Current Biology published an Article claiming to supply evidence for this idea. Debortoli et al. [18] sampled rotifers from natural populations and sequenced one mitochondrial and four nuclear loci. Species assignments were incongruent among loci for several samples, which was interpreted as evidence of "interspecific horizontal genetic transfers". Here, we use sequencing chromatograms supplied by the authors to demonstrate that samples treated as individuals actually contained two or more highly divergent mitoc hondrial and ribosomal sequences, revealing cross-contamination with DNA from multiple animals of different species. Other chromatograms indicate contamination with DNA from conspecific animals, explaining genetic and genomic evidence for "intraspecific horizontal exchanges" reported in the same study. Given the clear evidence of contamination, the data and findings of Debortoli et al. [18] provide no reliable support for their conclusions that DNA is transferred horizontally between or within bdelloid species

    Quantum Cosmology for the General Bianchi Type II, VI(Class A) and VII(Class A) vacuum geometries

    Get PDF
    The canonical quantization of the most general minisuperspace actions --i.e. with all six scale factor as well as the lapse function and the shift vector present-- describing the vacuum type II, VI and VII geometries, is considered. The reduction to the corresponding physical degrees of freedom is achieved through the usage of the linear constraints as well as the quantum version of the entire set of classical integrals of motion.Comment: 23 pages, LaTeX2e, No figure
    • 

    corecore