15,848 research outputs found
Improving the Fidelity of Optical Zeno Gates via Distillation
We have modelled the Zeno effect Control-Sign gate of Franson et al (PRA 70,
062302, 2004) and shown that high two-photon to one-photon absorption ratios,
, are needed for high fidelity free standing operation. Hence we
instead employ this gate for cluster state fusion, where the requirement for
is less restrictive. With the help of partially offline one-photon and
two-photon distillations, we can achieve a fusion gate with unity fidelity but
non-unit probability of success. We conclude that for , the Zeno
fusion gate will out perform the equivalent linear optics gate.Comment: 6 pages, 11 figures, Submitted to PR
Ordering dynamics of the driven lattice gas model
The evolution of a two-dimensional driven lattice-gas model is studied on an
L_x X L_y lattice. Scaling arguments and extensive numerical simulations are
used to show that starting from random initial configuration the model evolves
via two stages: (a) an early stage in which alternating stripes of particles
and vacancies are formed along the direction y of the driving field, and (b) a
stripe coarsening stage, in which the number of stripes is reduced and their
average width increases. The number of stripes formed at the end of the first
stage is shown to be a function of L_x/L_y^\phi, with \phi ~ 0.2. Thus,
depending on this parameter, the resulting state could be either single or
multi striped. In the second, stripe coarsening stage, the coarsening time is
found to be proportional to L_y, becoming infinitely long in the thermodynamic
limit. This implies that the multi striped state is thermodynamically stable.
The results put previous studies of the model in a more general framework
Finding Faces in Cluttered Scenes using Random Labeled Graph Matching
An algorithm for locating quasi-frontal views of human faces in cluttered scenes is presented. The algorithm works by coupling a set of local feature detectors with a statistical model of the mutual distances between facial features it is invariant with respect to translation, rotation (in the plane), and scale and can handle partial occlusions of the face. On a challenging database with complicated and varied backgrounds, the algorithm achieved a correct localization rate of 95% in images where the face appeared quasi-frontally
Quantum Entanglement Capacity with Classical Feedback
For any quantum discrete memoryless channel, we define a quantity called
quantum entanglement capacity with classical feedback (), and we show that
this quantity lies between two other well-studied quantities. These two
quantities - namely the quantum capacity assisted by two-way classical
communication () and the quantum capacity with classical feedback ()
- are widely conjectured to be different: there exists quantum discrete
memoryless channel for which . We then present a general scheme to
convert any quantum error-correcting codes into adaptive protocols for this
newly-defined quantity of the quantum depolarizing channel, and illustrate with
Cat (repetition) code and Shor code. We contrast the present notion with
entanglement purification protocols by showing that whilst the Leung-Shor
protocol can be applied directly, recurrence methods need to be supplemented
with other techniques but at the same time offer a way to improve the
aforementioned Cat code. For the quantum depolarizing channel, we prove a
formula that gives lower bounds on the quantum capacity with classical feedback
from any protocols. We then apply this formula to the protocols
that we discuss to obtain new lower bounds on the quantum capacity with
classical feedback of the quantum depolarizing channel
Conductance spectra of metallic nanotube bundles
We report a first principles analysis of electronic transport characteristics
for (n,n) carbon nanotube bundles. When n is not a multiple of 3, inter-tube
coupling causes universal conductance suppression near Fermi level regardless
of the rotational arrangement of individual tubes. However, when n is a
multiple of 3, the bundles exhibit a diversified conductance dependence on the
orientation details of the constituent tubes. The total energy of the bundle is
also sensitive to the orientation arrangement only when n is a multiple of 3.
All the transport properties and band structures can be well understood from
the symmetry consideration of whether the rotational symmetry of the individual
tubes is commensurate with that of the bundle
Perturbative Approach to the Quasinormal Modes of Dirty Black Holes
Using a recently developed perturbation theory for uasinormal modes (QNM's),
we evaluate the shifts in the real and imaginary parts of the QNM frequencies
due to a quasi-static perturbation of the black hole spacetime. We show the
perturbed QNM spectrum of a black hole can have interesting features using a
simple model based on the scalar wave equation.Comment: Published in PR
Modeling the IDV emissions of the BL Lac Objects with a Langevin type stochastic differential equation
In this paper, we introduce a simplified model for explaining the
observations of the optical intraday variability (IDV) of the BL Lac Objects.
We assume that the source of the IDV are the stochastic oscillations of an
accretion disk around a supermassive black hole. The Stochastic Fluctuations on
the vertical direction of the accretion disk are described by using a Langevin
type equation with a damping term and a random, white noise type force.
Furthermore, the preliminary numerical simulation results are presented, which
are based on the numerical analysis of the Langevin stochastic differential
equation.Comment: 4 pages, 4 figures, accepted for publication in J. Astrophys. Ast
- …