118 research outputs found

    Quantum quench spectroscopy of a Luttinger liquid: Ultrarelativistic density wave dynamics due to fractionalization in an XXZ chain

    Full text link
    We compute the dynamics of localized excitations produced by a quantum quench in the spin 1/2 XXZ chain. Using numerics combining the density matrix renormalization group and exact time evolution, as well as analytical arguments, we show that fractionalization due to interactions in the pre-quench state gives rise to "ultrarelativistic" density waves that travel at the maximum band velocity. The system is initially prepared in the ground state of the chain within the gapless XY phase, which admits a Luttinger liquid (LL) description at low energies and long wavelengths. The Hamiltonian is then suddenly quenched to a band insulator, after which the chain evolves unitarily. Through the gapped dispersion of the insulator spectrum, the post-quench dynamics serve as a "velocity microscope," revealing initial state particle correlations via space time density propagation. We show that the ultrarelativistic wave production is tied to the particular way in which fractionalization evades Pauli-blocking in the zero-temperature initial LL state.Comment: 32 pages, 27 figures; v2: references update

    Dielectric disorder in two-dimensional materials

    Get PDF
    Understanding and controlling disorder is key to nanotechnology and materials science. Traditionally, disorder is attributed to local fluctuations of inherent material properties such as chemical and structural composition, doping or strain. Here, we present a fundamentally new source of disorder in nanoscale systems that is based entirely on the local changes of the Coulomb interaction due to fluctuations of the external dielectric environment. Using two-dimensional semiconductors as prototypes, we experimentally monitor dielectric disorder by probing the statistics and correlations of the exciton resonances, and theoretically analyse the influence of external screening and phonon scattering. Even moderate fluctuations of the dielectric environment are shown to induce large variations of the bandgap and exciton binding energies up to the 100 meV range, often making it a dominant source of inhomogeneities. As a consequence, dielectric disorder has strong implications for both the optical and transport properties of nanoscale materials and their heterostructures

    Bright excitons in monolayer transition metal dichalcogenides: from Dirac cones to Dirac saddle points

    Full text link
    In monolayer transition metal dichalcogenides, tightly bound excitons have been discovered with a valley pseudospin that can be optically addressed through polarization selection rules. Here, we show that this valley pseudospin is strongly coupled to the exciton center-of-mass motion through electron-hole exchange. This coupling realizes a massless Dirac cone with chirality index I=2 for excitons inside the light cone, i.e. bright excitons. Under moderate strain, the I=2 Dirac cone splits into two degenerate I=1 Dirac cones, and saddle points with a linear Dirac spectrum emerge in the bright exciton dispersion. Interestingly, after binding an extra electron, the charged exciton becomes a massive Dirac particle associated with a large valley Hall effect protected from intervalley scattering. Our results point to unique opportunities to study Dirac physics, with exciton's optical addressability at specifiable momentum, energy and pseudospin. The strain-tunable valley-orbit coupling also implies new structures of exciton condensates, new functionalities of excitonic circuits, and possibilities for mechanical control of valley pseudospin

    Surface Affinity of the Hydronium Ion: The Effective Fragment Potential and Umbrella Sampling

    Get PDF
    The surface affinity of the hydronium ion in water is investigated with umbrella sampling and classical molecular dynamics simulations, in which the system is described with the effective fragment potential (EFP). The solvated hydronium ion is also explored using second order perturbation theory for the hydronium ion and the empirical TIP5P potential for the waters. Umbrella sampling is used to analyze the surface affinity of the hydronium ion, varying the number of solvent water molecules from 32 to 256. Umbrella sampling with the EFP method predicts the hydronium ion to most probably lie about halfway between the center and edge of the water cluster, independent of the cluster size. Umbrella sampling using MP2 for the hydronium ion and TIP5P for the solvating waters predicts that the solvated proton most probably lies about 0.5–2.0 Å from the edge of the water cluster independent of the cluster size

    Reduced dielectric screening and enhanced energy transfer in single and few-layer MoS2

    Full text link
    We report highly efficient non-radiative energy transfer from cadmium selenide (CdSe) quantum dots to monolayer and few-layer molybdenum disulfide (MoS2). The quenching of the donor quantum dot photoluminescence increases as the MoS2 flake thickness decreases, with the highest efficiency (>95%) observed for monolayer MoS2. This counterintuitive result arises from reduced dielectric screening in thin layer semiconductors having unusually large permittivity and a strong in-plane transition dipole moment, as found in MoS2. Excitonic energy transfer between a 0D emitter and a 2D absorber is fundamentally interesting and enables a wide range of applications including broadband optical down-conversion, optical detection, photovoltaic sensitization, and color shifting in light-emitting devices.Comment: 14 pages, 4 figure

    Basis set generation for quantum dynamics simulations using simple trajectory-based methods

    Get PDF
    Methods for solving the time-dependent Schrödinger equation generally employ either a global static basis set, which is fixed at the outset, or a dynamic basis set, which evolves according to classical-like or variational equations of motion; the former approach results in the well-known exponential scaling with system size, while the latter can suffer from challenging numerical problems, such as singular matrices, as well as violation of energy conservation. Here, we suggest a middle road: building a basis set using trajectories to place time-independent basis functions in the regions of phase space relevant to wave function propagation. This simple approach, which potentially circumvents many of the problems traditionally associated with global or dynamic basis sets, is successfully demonstrated for two challenging benchmark problems in quantum dynamics, namely, relaxation dynamics following photoexcitation in pyrazine, and the spin Boson model
    • …
    corecore