4,521 research outputs found

    Numerical analysis of hot deep drawing of din 27MNCRB5 steel sheets under controlled stretching

    Get PDF
    Hot stamping has been widely studied and increasingly applied in the automotive industry. This process is characterized by its ability to stamp high strength steels, yielding products with high mechanical strength, thus reducing the weight of stamped components and therefore the vehicles weight. It also demands less energy because steel sheets are heated by induction, more efficient than electric furnaces. With controlled stretching it is possible to manufacture thinner stamped parts with high mechanical strength, therefore it is necessary to know the formability limits to prevent failure and achieve the largest possible thickness reduction. In this work the hot formability of DIN 27MnCrB5 steel sheets under stretching conditions was evaluated by numerical simulation with the finite element software Forge2008. The numerical results were compared to experimental results. Initially hot tensile tests were simulated to define the strain rate in different regions of the sample and to evaluate the deformation at fracture. For tests at 700, 800 and 900ºC it was found that the strain rates vary from 0.01 to 0.5 s-1. Experimental tensile tests were also carried out with the same conditions as simulated. Both simulation and experiments presented very similar results for the ultimate tensile strength, and therefore it was possible to assume the experimental fracture strain as a consistent input for the numerical models. With the results of the tensile tests, hot Nakazima tests were simulated to evaluate the highest dome which could be formed without failure risks caused by sheet thickness thinning. The simulation results were validated by experimental tests, and as a result, a new numerical strategy was elaborated to define the hot formability based on the plastic instability and necking localization as a function of the stamping temperature and blank dimensions

    Lead extrusion analysis by finite volume method

    Get PDF
    Computational numerical simulation is nowadays largely applied in the design and analysis of metal forming process. Extrusion of metals is one main forming process largely applied in the manufacturing of metallic products or parts. Historically, the Finite Element Method has been applied for decades in metal extrusion analysis [4]. However, recently in the academy, there is a trend to use Finite Volume Method: literature suggests that metal flow by extrusion can be analyzed by the flow formulation [1, 2]. Thus, metal flow can be modelled such us an incompressible viscous fluid [2]. This hypothesis can be assumed because extrusion process is an isochoric process. The MacCormack Method is commonly used to simulate compressible fluid flow by the finite volume method [3]. However, metal extrusion and incompressible fluid flow do not present state equations for the evolution of pressure, and therefore, a velocity-pressure coupling method is necessary to obtain a consistent velocity and pressure fields [3]. Present work proposes a new numerical scheme to obtain information about metal flow in the extrusion process, in steady state. The governing equations were discretized by Finite Volume Method, using the Explicit MacCormack Method to structured and collocated mesh. The SIMPLE Method was applied to attain pressure-velocity coupling [3]. These new numerical scheme was applied to forward extrusion process of lead. The incompressible metal extrusion velocity fields achieved faster convergence and a good agreement with analytical and experimental results obtained from literature. The MacCormack Method applied for metals produced consistent results without the need of artificial viscosity as employed by the compressible flow simulation approaches. Furthermore, the present numerical results also suggest that MacCormack Method and SIMPLE can be applied in the solution of metal forming processes besides the traditional application for compressible fluid flow

    Aluminium extrusion analysis by the finite volume method

    Get PDF
    Present work proposes a novel numerical scheme to calculate stress and velocity fields of metal flow in axisymmetric extrusion process in steady state. Extrusion of aluminium is one main metal forming process largely applied in manufacturing bars and products with complex cross section shape. The upper-bound, slab, slip-line methods and more recently the numerical methods such as the Finite Element Method have been commonly applied in aluminium extrusion analysis. However, recently in the academy, the Finite Volume Method has been developed for metal flow analysis: literature suggests that extrusion of metals can be modelled by the flow formulation. Hence, metal flow can be mathematically modelled such us an incompressible non linear viscous fluid, owing to volume constancy and varying viscosity in metal forming. The governing equations were discretized by the Finite Volume Method, using the Explicit MacCormack Method in structured and collocated mesh. The MacCormack Method is commonly used to simulate compressible fluid flow by the finite volume method. However, metal plastic flow and incompressible fluid flow do not present state equations for the evolution of pressure, and therefore, a velocity-pressure coupling method is necessary to obtain a consistent velocity and pressure fields. The SIMPLE Method was applied to attain pressure-velocity coupling. This new numerical scheme was applied to forward hot extrusion process of an aluminium alloy. The metal extrusion velocity fields achieved fast convergence and a good agreement with experimental results. The MacCormack Method applied to metal extrusion produced consistent results without the need of artificial viscosity as employed by the compressible flow simulation approaches. Therefore, present numerical results also suggest that MacCormack method together with SIMPLE method can be applied in the solution of metal forming processes in addition to the traditional application for compressible fluid flow

    On the poverty of a priorism: technology, surveillance in the workplace and employee responses

    Get PDF
    Many debates about surveillance at work are framed by a set of a priori assumptions about the nature of the employment relationship that inhibits efforts to understand the complexity of employee responses to the spread of new technology at work. In particular, the debate about the prevalence of resistance is hamstrung from the outset by the assumption that all apparently non-compliant acts, whether intentional or not, are to be counted as acts of resistance. Against this background this paper seeks to redress the balance by reviewing results from an ethnographic study of surveillance-capable technologies in a number of British workplaces. It argues for greater attention to be paid to the empirical character of the social relations at work in and through which technologies are deployed and in the context of which employee responses are played out

    Reading Putnam, edited by Maria Baghramian.

    Get PDF

    Other minds and God: Russell and Stout on James and Schiller

    Get PDF
    In 1907–8, Russell and Stout presented an objection against James and Schiller, to which both James and Schiller replied. In this paper, I shall revisit their transatlantic exchange. Doing so will yield a better understanding of Schiller’s relationship to a worryingly solipsistic brand of phenomenalism. It will also allow us to appreciate a crucial difference between Schiller and James; a difference which James explicitly downplayed

    The chair that is used to sit in. Review of: The American Pragmatists, by Cheryl Misak

    Get PDF

    Truth by Analysis: Games, Names, and Philosophy By COLIN MCGINN

    Get PDF

    Ontology after Carnap

    Get PDF
    Ontology after Carnap focusses on metaontology in the light of recent interest in Carnap’s ‘Empiricism, Semantics and Ontology’. That paper is at the centre of things, as it is where Carnap formulates his internal/external dichotomy. If you haven’t already encountered the dichotomy, then neither Ontology after Carnap, nor this review, is for you. My aim in this review is to try to tease out some of the book’s themes, thereby giving some sense of contemporary neo-Carnapianism

    Grades of Discrimination: Indiscernibility, Symmetry, and Relativity

    Get PDF
    There are several relations which may fall short of genuine identity, but which behave like identity in important respects. Such grades of discrimination have recently been the subject of much philosophical and technical discussion. This paper aims to complete their technical investigation. Grades of indiscernibility are defined in terms of satisfaction of certain first-order formulas. Grades of symmetry are defined in terms of symmetries on a structure. Both of these families of grades of discrimination have been studied in some detail. However, this paper also introduces grades of relativity, defined in terms of relativeness correspondences. This paper explores the relationships between all the grades of discrimination, exhaustively answering several natural questions that have so far received only partial answers. It also establishes which grades can be captured in terms of satisfaction of object-language formulas and draws connections with definability theory
    corecore