277 research outputs found
Mean eigenvalues for simple, simply connected, compact Lie groups
We determine for each of the simple, simply connected, compact and complex
Lie groups SU(n), Spin and that particular region inside the unit
disk in the complex plane which is filled by their mean eigenvalues. We give
analytical parameterizations for the boundary curves of these so-called trace
figures. The area enclosed by a trace figure turns out to be a rational
multiple of in each case. We calculate also the length of the boundary
curve and determine the radius of the largest circle that is contained in a
trace figure. The discrete center of the corresponding compact complex Lie
group shows up prominently in the form of cusp points of the trace figure
placed symmetrically on the unit circle. For the exceptional Lie groups ,
and with trivial center we determine the (negative) lower bound on
their mean eigenvalues lying within the real interval . We find the
rational boundary values -2/7, -3/13 and -1/31 for , and ,
respectively.Comment: 12 pages, 8 figure
Symmetric mixed states of qubits: local unitary stabilizers and entanglement classes
We classify, up to local unitary equivalence, local unitary stabilizer Lie
algebras for symmetric mixed states into six classes. These include the
stabilizer types of the Werner states, the GHZ state and its generalizations,
and Dicke states. For all but the zero algebra, we classify entanglement types
(local unitary equivalence classes) of symmetric mixed states that have those
stabilizers. We make use of the identification of symmetric density matrices
with polynomials in three variables with real coefficients and apply the
representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for
published versio
Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions
We consider invariant Riemannian metrics on compact homogeneous spaces G/H
where an intermediate subgroup K between G and H exists, so that the
homogeneous space G/H is the total space of a Riemannian submersion. We study
the question as to whether enlarging the fibers of the submersion by a constant
scaling factor retains the nonnegative curvature in the case that the
deformation starts at a normal homogeneous metric. We classify triples of
groups (H,K,G) where nonnegative curvature is maintained for small
deformations, using a criterion proved by Schwachh\"ofer and Tapp. We obtain a
complete classification in case the subgroup H has full rank and an almost
complete classification in the case of regular subgroups.Comment: 23 pages; minor revisions, to appear in Geometriae Dedicat
The Semiclassical Limit for and Gauge Theory on the Torus
We prove that for and quantum gauge theory on a torus,
holonomy expectation values with respect to the Yang-Mills measure d\mu_T(\o)
=N_T^{-1}e^{-S_{YM}(\o)/T}[{\cal D}\o] converge, as , to
integrals with respect to a symplectic volume measure on the moduli
space of flat connections on the bundle. These moduli spaces and the symplectic
structures are described explicitly.Comment: 18 page
On the total curvatures of a tame function
Given a definable function f, enough differentiable, we study the continuity
of the total curvature function t --> K(t), total curvature of the level {f=t},
and the total absolute curvature function t-->|K| (t), total absolute curvature
of the level {f=t}. We show they admits at most finitely many discontinuities
Loop Quantum Cosmology II: Volume Operators
Volume operators measuring the total volume of space in a loop quantum theory
of cosmological models are constructed. In the case of models with rotational
symmetry an investigation of the Higgs constraint imposed on the reduced
connection variables is necessary, a complete solution of which is given for
isotropic models; in this case the volume spectrum can be calculated
explicitly. It is observed that the stronger the symmetry conditions are the
smaller is the volume spectrum, which can be interpreted as level splitting due
to broken symmetries. Some implications for quantum cosmology are presented.Comment: 21 page
Relative "-Numerical Ranges for Applications in Quantum Control and Quantum Information
Motivated by applications in quantum information and quantum control, a new
type of "-numerical range, the relative "-numerical range denoted
, is introduced. It arises upon replacing the unitary group U(N) in
the definition of the classical "-numerical range by any of its compact and
connected subgroups .
The geometric properties of the relative "-numerical range are analysed in
detail. Counterexamples prove its geometry is more intricate than in the
classical case: e.g. is neither star-shaped nor simply-connected.
Yet, a well-known result on the rotational symmetry of the classical
"-numerical range extends to , as shown by a new approach based on
Lie theory. Furthermore, we concentrate on the subgroup , i.e. the -fold tensor product of SU(2),
which is of particular interest in applications. In this case, sufficient
conditions are derived for being a circular disc centered at
origin of the complex plane. Finally, the previous results are illustrated in
detail for .Comment: accompanying paper to math-ph/070103
On all possible static spherically symmetric EYM solitons and black holes
We prove local existence and uniqueness of static spherically symmetric
solutions of the Einstein-Yang-Mills equations for any action of the rotation
group (or SU(2)) by automorphisms of a principal bundle over space-time whose
structure group is a compact semisimple Lie group G. These actions are
characterized by a vector in the Cartan subalgebra of g and are called regular
if the vector lies in the interior of a Weyl chamber. In the irregular cases
(the majority for larger gauge groups) the boundary value problem that results
for possible asymptotically flat soliton or black hole solutions is more
complicated than in the previously discussed regular cases. In particular,
there is no longer a gauge choice possible in general so that the Yang-Mills
potential can be given by just real-valued functions. We prove the local
existence of regular solutions near the singularities of the system at the
center, the black hole horizon, and at infinity, establish the parameters that
characterize these local solutions, and discuss the set of possible actions and
the numerical methods necessary to search for global solutions. That some
special global solutions exist is easily derived from the fact that su(2) is a
subalgebra of any compact semisimple Lie algebra. But the set of less trivial
global solutions remains to be explored.Comment: 26 pages, 2 figures, LaTeX, misprints corrected, 1 reference adde
- …