50 research outputs found
Crop Updates 2005 - Cereals
This session covers thirty six papers from different authors:
WHEAT AGRONOMY
1. Optimum sowing time of new wheat varieties in Western Australia, Darshan Sharma, Brenda Shackley, Mohammad Amjad, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture
2. Wheat varieties updated in âFlowering Calculatorâ: A model predicting flowering time, B. Shackley, D. Tennant, D. Sharma and C.M. Zaicou-Kunesch, Department of Agriculture
3. Plant populations for wheat varieties, Christine M. Zaicou-Kunesch, Wal Anderson, Darshan Sharma, Brenda Shackley and Mohammad Amjad, Department of Agriculture
4. New wheat cultivars response to fertiliser nitrogen in four major agricultural regions of Western Australia, Mohammad Amjad, Wal Anderson, Brenda Shackley, Darshan Sharma and Christine Zaicou-Kunesch, Department of Agriculture
5. Agronomic package for EGA Eagle Rock, Steve Penny, Department of Agriculture
6. Field evaluation of eastern and western wheats in large-scale farmerâs trials, Mohammad Amjad, Ben Curtis and Veronika Reck, Department of Agriculture
7. New wheat varieties for a changing environment, Richard Richards, CSIRO Plant Industry; Canberra
8. Farmers can profitably minimise exposure to frost! Garren Knell, Steve Curtin and David Sermon, ConsultAg
9. National Variety Trials, Alan Bedggood, Australian Crops Accreditation System; Horsham
10. Preharvest-sprouting tolerance of wheat in the field, T.B. Biddulph1, T.L. Setter2, J.A. Plummer1 and D.J. Mares3; 1Plant Biology; FNAS, University of Western Australia; 2Department of Agriculture, 3School of Agriculture and Wine, University of Adelaide
11. Waterlogging induces high concentration of Mn and Al in wheat genotypes in acidic soils, H. Khabaz-Saberi, T. Setter, I. Waters and G. McDonald, Department of Agriculture
12. Agronomic responses of new wheat varieties in the Northern Agricultural Region, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture
13. Agronomic responses of new wheat varieties in the Central Agricultural Region of WA, Darshan Sharma, Steve Penny and Wal Anderson, Department of Agriculture
14. EGA Eagle Rock tolerance to metribuzin and its mixtures, Harmohinder Dhammu, David Nicholson and Chris Roberts, Department of Agriculture
15. Herbicide tolerance of new bread wheats, Harmohinder Dhammu1 and David Nicholson2, Department of Agriculture
NUTRITION
16. The impact of fertiliser placement, timing and rates on nitrogen-use efficiency, Stephen Loss, CSBP Ltd
17. Cereals deficient in potassium are most susceptible to some leaf diseases, Ross Brennan and Kith Jayasena, Department of Agriculture
18. Responses of cereal yields to potassium fertiliser type, placement and timing, Eddy Pol, CSBP Limited
19. Sulphate of Potash, the potash of choice at seeding, Simon Teakle, United Farmers Co-operative
20. Essential disease management for successful barley production, K. Jayasena, R. Loughman, C. Beard, B. Paynter, K. Tanaka, G. Poulish and A. Smith, Department of Agriculture
21. Genotypic differences in potassium efficiency of wheat, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia
22. Genotypic differences in potassium efficiency of barley, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia
23. Investigating timing of nitrogen application in wheat, Darshan Sharma and Lionel Martin, Department of Agriculture, and Muresk Institute of Agriculture, Curtin University of Technology
24. Nutrient timing requirements for increased crop yields in the high rainfall cropping zone, Narelle Hill, Ron McTaggart, Dr Wal Anderson and Ray Tugwell, Department of Agriculture
DISEASES
25. Integrate strategies to manage stripe rust risk, Geoff Thomas, Robert Loughman, Ciara Beard, Kith Jayasena and Manisha Shankar, Department of Agriculture
26. Effect of primary inoculum level of stripe rust on variety response in wheat, Manisha Shankar, John Majewski and Robert Loughman, Department of Agriculture
27. Disease resistance update for wheat varieties in WA, M. Shankar, J.M. Majewski, D. Foster, H. Golzar, J. Piotrowski and R. Loughman, Department of Agriculture
28. Big droplets for wheat fungicides, Rob Grima, Agronomist, Elders
29. On farm research to investigate fungicide applications to minimise leaf disease impacts in wheat, Jeff Russell and Angie Roe, Department of Agriculture, and Farm Focus Consultants
PESTS
30. Rotations for nematode management, Vivien A. Vanstone, Sean J. Kelly, Helen F. Hunter and Mena C. Gilchrist, Department of Agriculture
31. Investigation into the adaqyacy of sealed farm silos in Western Australia to control phosphine-resistant Rhyzopertha dominica, C.R. Newman, Department of Agriculture
32.Insect contamination of cereal grain at harvest, Svetlana Micic and Phil Michael, Department of Agriculture
33. Phosure â Extending the life of phosphine, Gabrielle Coupland and Ern Kostas, Co-operative Bulk Handling
SOIL
34. Optimum combinations of ripping depth and tine spacing for increasing wheat yield, Mohammed Hamza and Wal Anderson, Department of Agriculture
35. Hardpan penetration ability of wheat roots, Tina Botwright Acuña and Len Wade, School of Plant Biology, University of Western Australia
MARKETS
36. Latin America: An emerging agricultural powerhouse, Ingrid Richardson, Food and Agribusiness Research, Rabobank; Sydne
Root penetration ability of wheat through thin wax-layers under drought and well-watered conditions
Sand over clay duplex soils and those compacted by heavy farm machinery restrict water infiltration and root growth because roots cannot penetrate hard soil. Under drought, restriction of roots to soil above the hard layer results in the early onset of plant water-deficit, unless roots can penetrate the hard layer to reach soil water and nutrients at depth. There is little to no information on the ability of roots of bread wheat (Triticum aestivum L.) to penetrate hardpans. Here we report on 3 experiments undertaken in a controlled environment in pots that validate and explore the use of thin Paraffin wax-Vaseline (WV) layers of different strengths to simulate a hardpan under contrasting water regimes. Seeds produced an average of 5 seminal roots, which all penetrated the low-impedance wax-layer (0.03WV), in such a way that seminal root dry matter (DM) was evenly distributed throughout the soil pro. le. The number and depth of penetrating seminal root axes declined as wax-layer strength increased, and a significant proportion of total length and DM of main seminal root axes was instead restricted to the 0-0.12-m soil layer above the wax layer. No roots penetrated the 0.60WV, which was equivalent to similar to 1.50 MPa penetrometer resistance. The distribution of seminal roots was less affected by water regime than nodal roots, which were severely reduced in number when drought was imposed at 14 days after sowing (DAS), compared with well-watered conditions. Growth of the seminal roots into soil beneath the wax-layer determined the pattern of stomatal conductance and volumetric soil water content (theta(v)) over the period of drought stress, as few nodal roots reached and penetrated the wax layer. Stomatal conductance declined suddenly at 19 days after the last irrigation, and partially recovered as water extraction increased in the 0.40-0.60-m soil depth. Reasons for this are discussed. The wax-layer technique requires validation for wheat in the field, but the technique offers promise for screening breeding lines for the ability to penetrate a hardpan
Genotype x environment interactions for root depth of wheat
Numerous studies have reported on genotype x environment (G x E) interactions for yield and components of yield, but none to our knowledge have attempted to use this approach for root traits. G x E interactions for root depth were assessed for 24 wheat genotypes over six field environments with contrasting soil physical characteristics in the low rainfall zone (ca. 320 mm) of Western Australia. Genotype accounted for only 12% of total variance compared with 40% for G x E interaction. Three environment and six genotype groups were identified, which accounted for 72% of the G x E sums of squares. Of this, AX1, AX2 and AX3 accounted for 30, 24 and 18% of the G x E-SS. respectively. We consider axes AX1 and AX2 to be representative of soil physical characteristics of either a sudden or gradual increase in soil strength with depth, respectively, which constrained root growth. AX3 was linked with other soil parameters related to root growth, possibly boron sensitivity. The three environment groups were defined according to their soil physical characteristics broadly grouped into low (E2), medium (El)) or high (E3) soil strength. The majority of the genotype groups aligned along the diagonal from negative for AX1 and AX2 in the lower left to positive for AX1 and AX2 in the upper right. Genotype groups containing Halberd (G3) and Machete (G5) were better adapted to soil physical constraint and vice versa for Cranbrook (G2) and C18 (G6) groups. The Janz group (G4) was mapped most negative for both axes, indicating an adaptive preference for friable soils. The Spear group (G1) exhibited a preferential adaptation to soil conditions in which a hardpan was encountered, or in which physical constraint increased early or suddenly. These results indicate that different root traits combinations are required for different target soil environments, as G x E for root depth was significant
Genotype x environment interactions for grain yield of upland rice backcros lines in diverse hydrological environments
Genotype by environment (G à E) interactions were investigated in Vandana and a subset of 13 BC2 and BC3 lines of an improved indica upland rice cultivar, Vandana, backcrossed with a drought-tolerant traditional japonica cultivar, Moroberekan, which has a thick and extensive root system, in response to eight hydrological field environments conducted at Los Baños, in the Philippines, between 2001 and 2003. The G à E interaction accounted for 13% of the total sum of squares with environment and genotype responsible for 84 and 3%, respectively. Cluster analysis identified four environment and six genotype groups, which accounted for 70% of the G à E sums of squares. Of this, AX1, AX2 and AX3 accounted for 27, 22 and 21% of the G à E-SS, respectively. AX1 represented yield potential; AX2 was related to soil conditions, aerobic status and possibly VPD; and AX3 to change in phenology (days to flowering) with stress. The four environment groups were considered as broadly representative of contrasting rice production environments, including lowland-type, upland-wet season and upland-aerobic environments that experienced vegetative- or anthesis-stage drought stress. Genotype groups differed in adaptation to these diverse environments. For genotype groups G1-G6, G3 (VM150) had stable yields across environments; G1 (VM134) had the greatest grain yield in lowland-type environments (E2); G5 (VM135) in wet season environments (E3); G6 (VM168) in anthesis-stage drought (E4); G2 (Vandana and VM26) in vegetative- and anthesis-stage drought (E1 and E4); G4 had average yields across environments. Implications for breeding of rice adapted to contrasting hydrological environments are discussed, with the caution that adaptation to more than one environment type is desirable, because, as is demonstrated in this paper, an untimely climatic event can transform one environment type into another. Our results suggest that selection in one environment type may not give benefit in other environment types, so testing in more than one environment type is essential
Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments
The aim of this research was to investigate the genetic basis for variation in root penetration ability and associated traits in the mapping population derived from the Australian bread wheat cultivars Halberd and Cranbrook in soil columns containing wax layers grown in controlled conditions and to compare this with performance in the field. Root and shoot traits of the doubled haploid line (DHL) from a cross of Halberd and Cranbrook were evaluated in soil columns containing wax layers. Contrasting DHLs that varied in the ability to penetrate a wax layer in soil columns were then evaluated for maximum root depth in the field on contrasting soils at Merredin, Western Australia. Genetic control was complex, and numerous quantitative trait loci (QTL) (53 in total) were located across most chromosomes that had a small genetic effect (LOD scores of 3.2â9.1). Of these QTL, 29 were associated with root traits, 37\ua0% of which were contributed positively by the Halberd with key traits being located on chromosomes 2D, 4A, 6B, and 7B. Variation in root traits of DHL in soil columns was linked with field performance. Despite the complexity of the traits and a large number of small QTL, the results can be potentially used to explore allelic diversity in root traits for hardpan penetration
Increasing the employability of agriculture graduates through the development of Real Industry Technology Learning Systems: Examining a case study in an online farm mapping system (PA Source)
There is a recognised skills shortage in the Australian agriculture industry, which is exacerbated by universities failing to keep pace in educating students in the latest agri-tech systems. A collaborative project between seven universities in Australia and the United States of America (U.S.A.), the SmartFarm Learning Hub (here forth known as âthe Hubâ), will develop real industry technology learning systems (RITLS) using real-
farm data and commercially available systems that can be used in tertiary teaching to increase graduate capabilities and readiness for employment within the agricultural industry. Reported in this paper is the evaluation of one case study: the online farm mapping package PA Source and a survey of 71 students studying a first year unit at the University of New England (UNE), Australia, on their perceptions of he value of this RITLS in 2016. PA Source is a cloud-based software that allows a farm map to be created and precision agriculture data collected on -farm or from satellites to be stored. Seventy-seven point percent (77.5%) of students who completed the practical and survey âstrongly agreedâ or âagreedâ that they would use the knowledge developed from the PA Source learning module in their future employment. A
statistically significant relationship (P<0.05) was found between the type of degree a student is studying and the probability they will apply what have they learnt in the practical in their future employment.
As part of the action research cycle, the PA Source learning module will
be enhanced based on student survey responses and delivered to a different cohort of students in 2017
Tertiary agricultural education in Australasia: Where to from here?
Agriculture, i.e. the ability to provide food reliably and efficiently for all, will remain the backbone of our economies. Although the relative economic importance of agriculture has diminished over time, its social and politÂical importance has never been questioned. This special status of agriculture as a pillar of our societies means that we need to pay close attention to the way we teach and deliver agricultural curricula at university level. Agriculture is particularly important in Australasia, a region at the edge of SE Asia, where rapid population growth and demographic changes are putting unprecedented pressures on food systems. This paper examines the curÂrent state of tertiary agricultural education in Australasia and highlights some of the foreseeable trends that will drive educational policies for the next few decades. We conclude that the two major regional economies, Australia and New Zealand, share a responsibility and a desire to provide modern and forward-looking curricula that will equip graduates with relevant skill sets and make them 'employment ready' In Australia such graduate attributes have recently been negotiated via a broad, consultative process that resulted in the Agriculture Learning and Teaching Academic Standards (AgLTAS). The standards describe the nature and extent of the agricultural disciÂpline as well as a set of Teaching and Learning Outcomes (TLOs) that were identified by potential employers as 'business critical': Knowledge, Understanding, Inquiry and Problem Solving, Communication and Personal and Professional Responsibility Australia and New Zealand also have the governance and institutional infrastructure that will allow them to act as educational hubs for the region and be responsive to the training and development needs of their nearest neighbours. This should also assist countries such as Fiji and Papua New Guinea to reform their curricula and upskill their accademic workforce Continuous and rapid changes in information technology requires constant curriculum review and renewal. Concepts such as on-line delivery, blended learning and flipped classrooms need to be part of curriculum delivery. A greater emphasis on pre-degree delivery and a greater responsiveness to articulated business needs is required to meet industry demand for a well-educated and skilled workforce. Satisfying market demands in the pre-degree space can create pathways for a future university eduÂcation. The role of universities in providing tertiary education in agriculture that is aligned with market needs will require flexibility from administrators, staff, curriculum developers, industry and students