386 research outputs found
Associated Absorption Lines in the Radio-Loud Quasar 3C 351: Far-Ultraviolet Echelle Spectroscopy from the Hubble Space Telescope
As one of the most luminous radio-loud quasars showing intrinsic ultraviolet
(UV) and X-ray absorption, 3C 351 provides a laboratory for studying the
kinematics and physical conditions of such ionized absorbers. We present an
analysis of the intrinsic absorption lines in the high-resolution ( 7
km/s) far-UV spectrum which was obtained from observations with the Space
Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope
(HST). The spectrum spans wavelengths from 1150 \AA to 1710 \AA, and shows
strong emission lines from O VI and Ly. Associated absorption lines are
present on the blue wings of the high-ionization emission doublets O VI
1032,1038 and N V 1238,1242, as well as the
Lyman lines through Ly. These intrinsic absorption features are
resolved into several distinct kinematic components, covering rest-frame
velocities from -40 to -2800 km/s, with respect to the systemic redshift of
. For the majority of these absorption line regions, strong
evidence of partial covering of both the background continuum source and the
BELR is found, which supports the intrinsic absorption origin and rules out the
possibility that the absorption arises in some associated cluster of galaxies.
The relationship between the far-UV absorbers and X-ray `warm' absorbers are
studied with the assistance of photoionization models. Most of the UV
associated absorption components have low values of the ionization parameter
and total hydrogen column densities, which is inconsistent with previous claims
that the UV and X-ray absorption arises in the same material. Analysis of these
components supports a picture with a wide range of ionization parameters,
temperatures, and column densities in AGN outflows.Comment: 27 pages with 5 figures, accepted by Ap
The CIV-MgII Kinematics Connection in <z>~0.7 Galaxies
We have examined Faint Object Spectrograph data from the Hubble Space
Telescope Archive for CIV 1548,1550 absorption associated with 40 MgII
2796,2803 absorption-selected galaxies at 0.4 < z < 1.4. We report a strong
correlation between MgII kinematics, measured in 6 km/s resolution HIRES/Keck
spectra, and W_r(1548); this implies a physical connection between the
processes that produce "outlying velocity" MgII clouds and high ionization
galactic/halo gas. We found no trend in ionization condition,
W_r(1548)/W_r(2796), with galaxy-QSO line-of-sight separation for 13 systems
with confirmed associated galaxies, suggesting no obvious ionization gradient
with galactocentric distance in these higher redshift galaxies. We find
tentative evidence (2-sigma) that W_r(1548)/W_r(2796) is anti-correlated with
galaxy color; if further data corroborate this trend, in view of the
strong CIV-MgII kinematics correlation, it could imply a connection between
stellar populations, star formation episodes, and the kinematics and ionization
conditions of halo gas at z~1.Comment: Accepted to Astrophysical Journal Letters; 4 pages; 3 figures;
emulateapj.st
The Physical Conditions and Dynamics of the Interstellar Medium in the Nucleus of M83: Observations of CO and CI
This paper presents CI, CO J=4-3, and CO J=3-2 maps of the barred spiral
galaxy M83 taken at the James Clerk Maxwell Telescope. Observations indicate a
double peaked structure which is consistent with gas inflow along the bar
collecting at the inner Lindblad resonance. This structure suggests that
nuclear starbursts can occur even in galaxies where this inflow/collection
occurs, in contrast to previous studies of barred spiral galaxies. However, the
observations also suggest that the double peaked emission may be the result of
a rotating molecular ring oriented nearly perpendicular to the main disk of the
galaxy. The CO J=4-3 data indicate the presence of warm gas in the nucleus that
is not apparent in the lower-J CO observations, which suggests that CO J=1-0
emission may not be a reliable tracer of molecular gas in starburst galaxies.
The twelve CI/CO J=4-3 line ratios in the inner 24'' x 24'' are uniform at the
2 sigma level, which indicates that the CO J=4-3 emission is originating in the
same hot photon-dominated regions as the CI emission. The CO J=4-3/J=3-2 line
ratios vary significantly within the nucleus with the higher line ratios
occurring away from peaks of emission along an arc of active star forming
regions. These high line ratios (>1) likely indicate optically thin gas created
by the high temperatures caused by star forming regions in the nucleus of this
starburst galaxy.Comment: 15 pages with 10 figures. To appear in the August 10 1998 issue of
The Astrophysical Journa
Metallicity Evolution of Damped Lyman-Alpha Galaxies
We have reanalyzed the existing data on Zinc abundances in damped Ly-alpha
(DLA) absorbers to investigate whether their mean metallicity evolves with
time. Most models of cosmic chemical evolution predict that the mass- weighted
mean interstellar metallicity of galaxies should rise with time from a low
value ~ 1/30 solar at z ~ 3 to a nearly solar value at z ~ 0. However, several
previous analyses have suggested that there is little or no evolution in the
global metallicity of DLAs. We have used a variety of statistical techniques to
quantify the global metallicity-redshift relation and its uncertainties, taking
into account both measurement and sampling errors. Three new features of our
analysis are: (a) an unbinned N(H I)-weighted nonlinear chi-square fit to an
exponential relation; (b) survival analysis to treat the large number of limits
in the existing data; and (c) a comparison of the data with several models of
cosmic chemical evolution based on an unbinned N(H I)-weighted chi-square. We
find that a wider range of evolutionary rates is allowed by the present data
than claimed in previous studies. The slope of the exponential fit to the N(H
I)-weighted mean Zn metallicity vs. redshift relation is -0.20 plus minus 0.11
counting limits as detections and -0.27 plus minus 0.12 counting limits as
zeros. Similar results are also obtained if the data are binned in redshift,
and if survival analysis is used. These slopes are marginally consistent with
no evolution, but are also consistent with the rates predicted by several
models of cosmic chemical evolution. Finally, we outline some future
measurements necessary to improve the statistics of the global
metallicity-redshift relation.Comment: 25 pages, 1 figure, accepted for publication in the Astrophysical
Journa
Globular cluster systems II: On the formation of old globular clusters and their sites of formation
We studied the metal-poor globular cluster (GC) populations of a large
variety of galaxies (47 galaxies spanning about 10mag in absolute brightness)
and compared their mean [Fe/H] with the properties of the host galaxies. The
mean [Fe/H] of the systems lie in the -1.65<[Fe/H]<-1.20 range (74% of the
population). Using only GC systems with more than 6 objects detected, 85% of
the population lie within -1.65<[Fe/H]<-1.20. The relation between the mean
[Fe/H] of the metal-poor GC systems and the Mv of their host galaxies presents
a very low slope which includes zero. An analysis of the correlation of the
mean [Fe/H] with other galaxy properties also leads to the conclusion that no
strong correlation exists. The lack of correlation suggests a formation of all
metal-poor GC in similar gas fragments. A weak correlation might exist between
mean [Fe/H] of the metal-poor GC and host galaxy metallicity. This would imply
that some fragments in which metal-poor GC formed were already embedded in the
larger dark matter halo of the final galaxy (as oppose to being independent
satellites that were accreted later). Our result suggests a homogeneous
formation of metal-poor GC in all galaxies, in typical fragments of masses
around 10^9-10^10 solar masses with very similar metallicities, compatible with
hierarchical formation scenarios for galaxies. We compared the mean [Fe/H] of
the metal-poor GC populations with the typical metallicities of high-z objects.
If we add the constraint that GC need a high column density of gas to form,
DLAs are the most likely sites for the formation of metal-poor GC populations.Comment: accepted for publication in AJ, scheduled for the May 2001 issu
Dynamical Expansion of Ionization and Dissociation Front around a Massive Star. II. On the Generality of Triggered Star Formation
We analyze the dynamical expansion of the HII region, photodissociation
region, and the swept-up shell, solving the UV- and FUV-radiative transfer, the
thermal and chemical processes in the time-dependent hydrodynamics code.
Following our previous paper, we investigate the time evolutions with various
ambient number densities and central stars. Our calculations show that basic
evolution is qualitatively similar among our models with different parameters.
The molecular gas is finally accumulated in the shell, and the gravitational
fragmentation of the shell is generally expected. The quantitative differences
among models are well understood with analytic scaling relations. The detailed
physical and chemical structure of the shell is mainly determined by the
incident FUV flux and the column density of the shell, which also follow the
scaling relations. The time of shell-fragmentation, and the mass of the
gathered molecular gas are sensitive tothe ambient number density. In the case
of the lower number density, the shell-fragmentation occurs over a longer
timescale, and the accumulated molecular gas is more massive. The variations
with different central stars are more moderate. The time of the
shell-fragmentation differs by a factor of several with the various stars of
M_* = 12-101 M_sun. According to our numerical results, we conclude that the
expanding HII region should be an efficient trigger for star formation in
molecular clouds if the mass of the ambient molecular material is large enough.Comment: 49 pages, including 17 figures ; Accepted for publication in Ap
Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program II. Activity and radial velocity
Due to their low mass and luminosity, M dwarfs are ideal targets if one hopes
to find low-mass planets similar to Earth by using the radial velocity (RV)
method. However, stellar magnetic cycles could add noise or even mimic the RV
signal of a long-period companion. Following our previous work that studied the
correlation between activity cycles and long-term RV variations for K dwarfs we
now expand that research to the lower-end of the main sequence. Our objective
is to detect any correlations between long-term activity variations and the
observed RV of a sample of M dwarfs. We used a sample of 27 M-dwarfs with a
median observational timespan of 5.9 years. The cross-correlation function
(CCF) with its parameters RV, bisector inverse slope (BIS), full-width-at-half-
maximum (FWHM) and contrast have been computed from the HARPS spectrum. The
activity index have been derived using the Na I D doublet. These parameters
were compared with the activity level of the stars to search for correlations.
We detected RV variations up to ~5 m/s that we can attribute to activity cycle
effects. However, only 36% of the stars with long-term activity variability
appear to have their RV affected by magnetic cycles, on the typical timescale
of ~6 years. Therefore, we suggest a careful analysis of activity data when
searching for extrasolar planets using long-timespan RV data.Comment: 20 pages, 12 figures, 3 tables, accepted for publication in Astronomy
and Astophysic
Noise Sources in Photometry and Radial Velocities
The quest for Earth-like, extrasolar planets (exoplanets), especially those
located inside the habitable zone of their host stars, requires techniques
sensitive enough to detect the faint signals produced by those planets. The
radial velocity (RV) and photometric transit methods are the most widely used
and also the most efficient methods for detecting and characterizing
exoplanets. However, presence of astrophysical "noise" makes it difficult to
detect and accurately characterize exoplanets. It is important to note that the
amplitude of such astrophysical noise is larger than both the signal of
Earth-like exoplanets and state-of-the-art instrumentation limit precision,
making this a pressing topic that needs to be addressed. In this chapter, I
present a general review of the main sources of noise in photometric and RV
observations, namely, stellar oscillations, granulation, and magnetic activity.
Moreover, for each noise source I discuss the techniques and observational
strategies which allow us to mitigate their impact.Comment: 11 pages, 2 tables, Lecture presented at the IVth Azores
International Advanced School in Space Sciences on "Asteroseismology and
Exoplanets: Listening to the Stars and Searching for New Worlds"
(arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in
July 201
The SOPHIE search for northern extrasolar planets. V. Follow-up of ELODIE candidates: Jupiter-analogs around Sun-like stars
We present radial-velocity measurements obtained in a programs underway to
search for extrasolar planets with the spectrograph SOPHIE at the 1.93-m
telescope of the Haute-Provence Observatory. Targets were selected from
catalogs observed with ELODIE, mounted previously at the telescope, in order to
detect long-period planets with an extended database close to 15 years. Two new
Jupiter-analog candidates are reported to orbit the bright stars HD150706 and
HD222155 in 16.1 and 10.9 yr at 6.7 (+4.0,-1.4) and 5.1(+0.6,-0.7) AU and to
have minimum masses of 2.71 (+1.44,-0.66) and 1.90 (+0.67,-0.53) M_Jup,
respectively. Using the measurements from ELODIE and SOPHIE, we refine the
parameters of the long-period planets HD154345b and HD89307b, and publish the
first reliable orbit for HD24040b. This last companion has a minimum mass of
4.01 +/- 0.49 M_Jup orbiting its star in 10.0 yr at 4.92 +/- 0.38 AU. Moreover,
the data provide evidence of a third bound object in the HD24040 system. With a
surrounding dust debris disk, HD150706 is an active G0 dwarf for which we
partially corrected the effect of the stellar spot on the SOPHIE
radial-velocities. HD222155 is an inactive G2V star. On the basis of the
previous findings of Lovis and collaborators and since no significant
correlation between the radial-velocity variations and the activity index are
found in the SOPHIE data, these variations are not expected to be only due to
stellar magnetic cycles. Finally, we discuss the main properties of this new
population of long-period Jupiter-mass planets, which for the moment, consists
of fewer than 20 candidates. These stars are preferential targets either for
direct-imaging or astrometry follow-up to constrain the system parameters and
for higher precision radial-velocity to search for lower mass planets, aiming
to find a Solar System twin.Comment: accepted for publication in Astronomy & Astrophysic
Metallicity Evolution of Damped Lyman Alpha Systems In Lambda CDM Cosmology
Utilizing a new, high mass resolution hydrodynamic simulation we compute the
metallicity evolution of damped Lyman alpha systems (DLAs) and find a
reasonable agreement with observations. In particular, the observed slow
evolution of the DLA metallicity occurs naturally in the simulation due to the
combined effects of physical and observational selection. The slow metallicity
evolution is caused by the steady transformation, with increasing time, of the
highest metallicity systems to "galaxies", thus depleting this category, while
all the lower metallicity systems show, individually, an increase in
metallicity. Although the trend of DLA metallicity with redshift is in good
agreement with observations, it appears that the average metallicity of
simulated DLAs is higher than observed by 0.3-0.5 dex in the probed redshift
range (z=0-5). Our study indicates that this difference may be attributed to
observational selection effects due to dust obscuration. If we allow for a dust
obscuration effect, our model reproduces the observed metallicity evolution in
both amplitude and slope. We find that DLAs are not a simple population but
probe a range of different systems and the mix changes with redshift. About 50%
of all metals in the gaseous phase is in DLAs at all times from z=5 to z=1,
making a rapid downturn at z\le 1 to ~20% by z=0, as metals are swept into the
hotter components of the IGM as well as locked up in stars. While not the
primary focus of this study, we find that the model provides good matches to
observations with respect to column density distribution and evolution of
neutral gas content, if the same dust obscuration is taken into account. We
find Omega_{DLA,comp}=(1-3)E-3, depending on the effect of dust obscuration.Comment: accepted to ApJ, 41 pages Figure 1 in color can be found at
http://astro.princeton.edu/~cen/PROJECTS/p2/rhob_Z3.jpe
- âŠ