122 research outputs found
Data driven optimal filtering for phase and frequency of noisy oscillations: application to vortex flowmetering
A new method for extracting the phase of oscillations from noisy time series
is proposed. To obtain the phase, the signal is filtered in such a way that the
filter output has minimal relative variation in the amplitude (MIRVA) over all
filters with complex-valued impulse response. The argument of the filter output
yields the phase. Implementation of the algorithm and interpretation of the
result are discussed. We argue that the phase obtained by the proposed method
has a low susceptibility to measurement noise and a low rate of artificial
phase slips. The method is applied for the detection and classification of mode
locking in vortex flowmeters. A novel measure for the strength of mode locking
is proposed.Comment: 12 pages, 10 figure
High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician
It has been hypothesized that predecessors of todayâs bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yrâ1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than todayâs global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate
Quantification of uncertainties in global grazing systems assessments
Livestock systems play a key role in global sustainability challenges like food security and climate change, yet, many unknowns and large uncertainties prevail. We present a systematic, spatially explicit assessment of uncertainties related to grazing intensity (GI), a key metric for assessing ecological impacts of grazing, by combining existing datasets on a) grazing feed intake, b) the spatial distribution of livestock, c) the extent of grazing land, and d) its net primary productivity (NPP). An analysis of the resulting 96 maps implies that on average 15% of the grazing land NPP is consumed by livestock. GI is low in most of worlds grazing lands but hotspots of very high GI prevail in 1% of the total grazing area. The agreement between GI maps is good on one fifth of the world's grazing area, while on the remainder it is low to very low. Largest uncertainties are found in global drylands and where grazing land bears trees (e.g., the Amazon basin or the Taiga belt). In some regions like India or Western Europe massive uncertainties even result in GI > 100% estimates. Our sensitivity analysis indicates that the input-data for NPP, animal distribution and grazing area contribute about equally to the total variability in GI maps, while grazing feed intake is a less critical variable. We argue that a general improvement in quality of the available global level datasets is a precondition for improving the understanding of the role of livestock systems in the context of global environmental change or food security
Evidence of intense chromosomal shuffling during conifer evolution
Although recent advances have been gained on genome evolution in angiosperm lineages, virtually nothing is known about karyotype evolution in the other group of seed plants, the gymnosperms. Here, we used high-density gene-based linkagemapping to compare the karyotype structure of two families of conifers (the most abundant group of gymnosperms) separated around 290 Ma Pinaceae and Cupressaceae.We propose for the first time amodel based on the fusion of 20 ancestral chromosomal blocks that may have shaped the modern karyotpes of Pinaceae (with n=12) and Cupressaceae (with n=11). The considerable difference in modern genome organization between these two lineages contrasts strongly with the remarkable level of synteny already reported within the Pinaceae. It also suggests a convergent evolutionary mechanism of chromosomal block shuffling that has shaped the genomes of the spermatophytes. ©The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution
Sighted and visually impaired studentsâ perspectives of illustrations, diagrams and drawings in school science
In this paper we report on the views of students with and without visual impairments on the use of illustrations, diagrams and drawings (IDD) in science lessons.
Method
Our findings are based on data gathered through a brief questionnaire completed by a convenience sample of students prior to trialling new resource material. The questionnaire sought to understand the studentsâ views about using IDD in science lessons. The classes involved in the study included one class from a primary school, five classes from a secondary school and one class from a school for visually impaired students.
Results
Approximately 20% of the participants thought that the diagrams were boring and just under half (48%) of the total sample (regardless of whether they were sighted or visually impaired) did not think diagrams were easy to use. Only 14% of the participants felt that repeated encounters with the same diagrams made the diagrams easy to understand. Unlike sighted students who can âflitâ across diagrams, a visually impaired student may only see or touch a small part of the diagram at a time so for them âflitingâ could result in loss of orientation with the diagram.
Conclusions
Treating sighted and visually impaired pupils equally is different to treating them identically. Sighted students incidentally learn how to interpret visual information from a young age. Students who acquire sight loss need to learn the different rules associated with reading tactile diagrams, or large print and those who are congenitally blind do not have visual memories to rely upon
An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen
Background: Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals.
Main body: Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends
Long-term decline of the Amazon carbon sink
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6
Gaia Data Release 2 Mapping the Milky Way disc kinematics
Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than G(RVS) = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (sigma((omega) over bar)/(omega) over bar Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential.Peer reviewe
Gaia Data Release 2 Observations of solar system objects
CONTEXT: The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs)
since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These
asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each
Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered
G band is also provided for selected observations.
AIMS: We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then
explore the data set to assess its quality.
METHODS: To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary
to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect
is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that
was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The
distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was
compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue
photometers (RP and BP).
RESULTS: The overall astrometric performance is close to the expectations, with an optimal range of brightness G ⌠12 â 17. In this
range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance.
Asteroids brighter than G ⌠12 are affected by a lower performance of the processing of their signals. The dramatic improvement
brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection
of subtle non-gravitational effects
Gaia Data Release 2: The celestial reference frame (Gaia-CRF2)
Context. The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars which define akinematically non-rotating reference frame in the optical domain. A subset of them have accurate VLBI positions which allow the axes of thereference frame to be aligned with the ICRF radio frame. Aims. We aim to describe the astrometric and photometric properties of the quasars selected to represent Gaia-CRF2, the celestial reference frame of Gaia DR2, and to compare the optical and radio positions for sources with accurate VLBI positions. Methods. Descriptive statistics are used to characterise the overall properties of the quasar sample. Residual rotation and orientation errors and large-scale systematics are quantified by means of expansions in vector spherical harmonics. Positional differences are calculated relative to a prototype version of the forthcoming ICRF3. Results. Gaia-CRF2 is materialised by the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G ' 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = 20 mag. Large-scale systematics are estimated to be in the range 20 to 30 ÎŒas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions. Conclusions. Based on less than 40% of the data expected from the nominal Gaia mission, Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame meeting the ICRS prescriptions, i.e. built only on extragalactic sources. In accuracy it matches the current radio frame realised in the ICRF but with a much higher density of sources in all parts of the sky except along the Galactic equator
- âŠ