572 research outputs found

    Renormalization of NN-Scattering with One Pion Exchange and Boundary Conditions

    Full text link
    A non perturbative renormalization scheme for Nucleon-Nucleon interaction based on boundary conditions at short distances is presented and applied to the One Pion Exchange Potential. It is free of off-shell ambiguities and ultraviolet divergences, provides finite results at any step of the calculation and allows to remove the short distance cut-off in a suitable way. Low energy constants and their non-perturbative evolution can directly be obtained from experimental threshold parameters in a completely unique and model independent way when the long range explicit pion effects are eliminated. This allows to compute scattering phase shifts which are, by construction consistent with the effective range expansion to a given order in the C.M. momentum pp. In the singlet 1S0^1S_0 and triplet 3S13D1^3S_1- ^3D_1 channels ultraviolet fixed points and limit cycles are obtained respectively for the threshold parameters. Data are described satisfactorily up to CM momenta of about pmπp \sim m_\pi.Comment: 22 pages, 10 figures, revte

    Effective theories of scattering with an attractive inverse-square potential and the three-body problem

    Full text link
    A distorted-wave version of the renormalisation group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wave function satisfies a Schroedinger equation with an attractive inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalisation of the three-body interactions, with the renormalisation-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces.Comment: 19 pages (RevTeX), 2 figure

    The low-lying excitations of polydiacetylene

    Full text link
    The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the nature of the low-lying vertical transition energies of polydiacetylene. The model is solved using the density matrix renormalisation group method for a fixed acetylenic geometry for chains of up to 102 atoms. The non-linear optical properties of polydiacetylene are considered, which are determined by the third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are used as the geometric model for the calculation. For short chains, the calculated E(1Bu) agrees with the experimental value, within solvation effects (ca. 0.3 eV). The charge gap is used to characterise bound and unbound states. The nBu is above the charge gap and hence a continuum state; the 1Bu, 2Ag and mAg are not and hence are bound excitons. For large chain lengths, the nBu tends towards the charge gap as expected, strongly suggesting that the nBu is the conduction band edge. The conduction band edge for PDA is agreed in the literature to be ca. 3.0 eV. Accounting for the strong polarisation effects of the medium and polaron formation gives our calculated E(nBu) ca. 3.6 eV, with an exciton binding energy of ca. 1.0 eV. The 2Ag state is found to be above the 1Bu, which does not agree with relaxed transition experimental data. However, this could be resolved by including explicit lattice relaxation in the Pariser- Parr-Pople-Peierls model. Particle-hole separation data further suggest that the 1Bu, 2Ag and mAg are bound excitons, and that the nBu is an unbound exciton.Comment: LaTeX, 23 pages, 4 postscript tables and 8 postscript figure

    Optical conductivity of one-dimensional doped Hubbard-Mott insulator

    Full text link
    We study the optical response of a strongly correlated electron system near the metal-insulator transition using a mapping to the sine-Gordon model. With semiclassical quantization, the spectral weight is distributed between a Drude peak and absorption lines due to breathers. We calculate the Drude weight, the optical gap, and the lineshape of breather absorption.Comment: 4 pages, 2 EPS figures, REVTEX 4, a final versio

    Информационные технологии в банковской системе

    Get PDF
    Almost all activities of the Bank subject to the domination systems. The system itself involves a procedure control, a set of interconnected elements, procedures, methods, and many similar concepts. When the Bank is recruiting employees, it applies to this particular system, which involves placing ads on job interviews, the definition of appropriate skills, discussion of working conditions and so on. This process is a slender organized system with its internal procedures and prescribed norms

    Staggered flux and stripes in doped antiferromagnets

    Full text link
    We have numerically investigated whether or not a mean-field theory of spin textures generate fictitious flux in the doped two dimensional tJt-J-model. First we consider the properties of uniform systems and then we extend the investigation to include models of striped phases where a fictitious flux is generated in the domain wall providing a possible source for lowering the kinetic energy of the holes. We have compared the energetics of uniform systems with stripes directed along the (10)- and (11)-directions of the lattice, finding that phase-separation generically turns out to be energetically favorable. In addition to the numerical calculations, we present topological arguments relating flux and staggered flux to geometric properties of the spin texture. The calculation is based on a projection of the electron operators of the tJt-J model into a spin texture with spinless fermions.Comment: RevTex, 19 pages including 20 figure

    Irreversibility and Polymer Adsorption

    Full text link
    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the non-equilibrium layers which result. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let

    Renormalisation-group analysis of repulsive three-body systems

    Full text link
    A coordinate space approach, based on that used by Efimov, is applied to three-body systems with contact interactions between pairs of particles. In systems with nonzero orbital angular momentum or with asymmetric spatial wave functions, the hyperradial equation contains a repulsive 1/r^2 potential. The resulting wave functions are used in a renormalisation group analysis. This confirms Griesshammer's power counting for short-range three-body forces in these systems. The only exceptions are ones like the 4S channel for three nucleons, where any derivatives needed in the interaction are found to be already counted by the scaling with the cut-off.Comment: 5 pages, RevTe
    corecore