3,074 research outputs found
Joint Deep Modeling of Users and Items Using Reviews for Recommendation
A large amount of information exists in reviews written by users. This source
of information has been ignored by most of the current recommender systems
while it can potentially alleviate the sparsity problem and improve the quality
of recommendations. In this paper, we present a deep model to learn item
properties and user behaviors jointly from review text. The proposed model,
named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel
neural networks coupled in the last layers. One of the networks focuses on
learning user behaviors exploiting reviews written by the user, and the other
one learns item properties from the reviews written for the item. A shared
layer is introduced on the top to couple these two networks together. The
shared layer enables latent factors learned for users and items to interact
with each other in a manner similar to factorization machine techniques.
Experimental results demonstrate that DeepCoNN significantly outperforms all
baseline recommender systems on a variety of datasets.Comment: WSDM 201
Designing a novel heterostructure AgInS<sub>2</sub>@MIL-101(Cr) photocatalyst from PET plastic waste for tetracycline degradation
Semiconductor-containing porous materials with a well-defined structure could be unique scaffolds for carrying out selective organic transformations driven by visible light. We herein introduce for the first time a heterostructure of silver indium sulfide (AgInS(2)) ternary chalcogenide and a highly porous MIL-101(Cr) metal–organic framework (MOF) synthesised from polyethylene terephthalate plastic waste. Our results demonstrate that AgInS(2) nanoparticles were uniformly attached to each lattice plane of the octahedral MIL-101(Cr) structure, resulting in a nanocomposite with a high distribution of semiconductors in a porous media. We also demonstrate that the nanocomposite with up to 40% of AgInS(2) doping exhibited excellent catalytic activity for tetracycline degradation under visible light irradiation (∼99% tetracycline degraded after 4 h) and predominantly maintained its performance after five cycles. These results could promote a new material circularity pathway to develop new semiconductors that can be used to protect water from further pollution
Heat capacity studies of Ce and Rh site substitution in the heavy fermion antiferromagnet CeRhIn_5;: Short-range magnetic interactions and non-Fermi-liquid behavior
In heavy fermion materials superconductivity tends to appear when long range
magnetic order is suppressed by chemical doping or applying pressure. Here we
report heat capacity measurements on diluted alloyes of the heavy fermion
superconductor CeRhIn_5;. Heat capacity measurements have been performed on
CeRh_{1-y}Ir_{y}In_5; (y <= 0.10) and Ce_{1-x}La_{x}Rh_{1-y}Ir_{y}In_5; (x <=
0.50) in applied fields up to 90 kOe to study the affect of doping and magnetic
field on the magnetic ground state. The magnetic phase diagram of
CeRh_{0.9}Ir_{0.1}In_5; is consistent with the magnetic structure of CeRhIn_5;
being unchanged by Ir doping. Doping of Ir in small concentrations is shown to
slightly increase the antiferromagnetic transition temperature T_{N} (T_{N}=3.8
K in the undoped sample). La doping which causes disorder on the Ce sublattice
is shown to lower T_{N} with no long range order observed above 0.34 K for
Ce_{0.50}La_{0.50}RhIn_5;. Measurements on Ce_{0.50}La_{0.50}RhIn_5; show a
coexistence of short range magnetic order and non-Fermi-liquid behavior. This
dual nature of the Ce 4f-electrons is very similar to the observed results on
CeRhIn_5; when long range magnetic order is suppressed at high pressure.Comment: 8 pages, 9 figure
Stabilized Kuramoto-Sivashinsky system
A model consisting of a mixed Kuramoto - Sivashinsky - KdV equation, linearly
coupled to an extra linear dissipative equation, is proposed. The model applies
to the description of surface waves on multilayered liquid films. The extra
equation makes its possible to stabilize the zero solution in the model,
opening way to the existence of stable solitary pulses (SPs). Treating the
dissipation and instability-generating gain in the model as small
perturbations, we demonstrate that balance between them selects two
steady-state solitons from their continuous family existing in the absence of
the dissipation and gain. The may be stable, provided that the zero solution is
stable. The prediction is completely confirmed by direct simulations. If the
integration domain is not very large, some pulses are stable even when the zero
background is unstable. Stable bound states of two and three pulses are found
too. The work was supported, in a part, by a joint grant from the Israeli
Minsitry of Science and Technology and Japan Society for Promotion of Science.Comment: A text file in the latex format and 20 eps files with figures.
Physical Review E, in pres
Multichannel Photon Counting Lidar Measurements Using USB-based Digital Storage Oscilloscope
We present a simple method of making multichannel photon counting measurements of weak lidar signal from large ranges, using commonly available USB-based digital storage oscilloscopes. The single photon pulses from compact photomultiplier tubes are amplified and stretched so that the pulses are large and broad enough to be sampled efficiently by the USB oscilloscopes. A software interface written in Labview is then used to count the number of photon pulses in each of the prescribed time bins to form the histogram of LIDAR signal. This method presents a flexible alternative to the modular multichannel scalers and facilitate the development of sensitive lidar systems
Twinning superlattices in indium phosphide nanowires
Here, we show that we control the crystal structure of indium phosphide (InP)
nanowires by impurity dopants. We have found that zinc decreases the activation
barrier for 2D nucleation growth of zinc-blende InP and therefore promotes the
InP nanowires to crystallise in the zinc blende, instead of the commonly found
wurtzite crystal structure. More importantly, we demonstrate that we can, by
controlling the crystal structure, induce twinning superlattices with
long-range order in InP nanowires. We can tune the spacing of the superlattices
by the wire diameter and the zinc concentration and present a model based on
the cross-sectional shape of the zinc-blende InP nanowires to quantitatively
explain the formation of the periodic twinning.Comment: 18 pages, 4 figure
Island phases and charge order in two-dimensional manganites
The ferromagnetic Kondo lattice model with an antiferromagnetic interaction
between localized spins is a minimal description of the competing kinetic t and
magnetic K energy terms which generate the rich physics of manganite systems.
Motivated by the discovery in one dimension of homogeneous ``island phases'',
we consider the possibility of analogous phases in higher dimensions. We
characterize the phases present at commensurate fillings, and consider in
detail the effects of phase separation in all filling and parameter regimes. We
deduce that island and flux phases are stable for intermediate values of K/t at
the commensurate fillings n = 1/4, 1/3, 3/8, and 1/2. We discuss the connection
of these results to the charge and magnetic ordering observed in a wide variety
of manganite compounds.Comment: 13 pages, 17 figure
Strongly coupled matter near phase transition
In the Hartree approximation of Cornwall-Jackiw-Tomboulis (CJT) formalism of
the real scalar field theory, we show that for the strongly coupled scalar
system near phase transition, the shear viscosity over entropy density is
small, however, the bulk viscosity over entropy density is large. The large
bulk viscosity is related to the highly nonconformal equation of state. It is
found that the square of the sound velocity near phase transition is much
smaller than the conformal value 1/3, and the trace anomaly at phase transition
deviates far away from 0. These results agree well with the lattice results of
the complex QCD system near phase transition.Comment: 6 pages, 2 figures, 1 table, contributed to the International
Conference on Strangeness in Quark Matter 2008, Beijing, China, 6-10 October
200
Cluster state preparation using gates operating at arbitrary success probabilities
Several physical architectures allow for measurement-based quantum computing
using sequential preparation of cluster states by means of probabilistic
quantum gates. In such an approach, the order in which partial resources are
combined to form the final cluster state turns out to be crucially important.
We determine the influence of this classical decision process on the expected
size of the final cluster. Extending earlier work, we consider different
quantum gates operating at various probabilites of success. For finite
resources, we employ a computer algebra system to obtain the provably optimal
classical control strategy and derive symbolic results for the expected final
size of the cluster. We identify two regimes: When the success probability of
the elementary gates is high, the influence of the classical control strategy
is found to be negligible. In that case, other figures of merit become more
relevant. In contrast, for small probabilities of success, the choice of an
appropriate strategy is crucial.Comment: 7 pages, 9 figures, contribution to special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing". Replaced with published
versio
Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions
Anisotropic high energy density domains may be formed at early stages of
ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics
or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic
observables resulting from an initially created anisotropic high energy density
domain. Based on our studies using a transport model we find that the initial
anisotropies are reflected in the freeze-out multiplicity distribution of both
pions and kaons due to secondary hadronic rescattering. The anisotropy appears
to be stronger for particles at high transverse momenta. The overall kaon
multiplicity increases with large fluctuations of local energy densities, while
no change has been found in the pion multiplicity.Comment: Submitted to PR
- …