55 research outputs found

    Ex Vivo Treatment with a Novel Synthetic Aminoglycoside NB54 in Primary Fibroblasts from Rett Syndrome Patients Suppresses MECP2 Nonsense Mutations

    Get PDF
    BACKGROUND: Nonsense mutations in the X-linked methyl CpG-binding protein 2 (MECP2) comprise a significant proportion of causative MECP2 mutations in Rett syndrome (RTT). Naturally occurring aminoglycosides, such as gentamicin, have been shown to enable partial suppression of nonsense mutations related to several human genetic disorders, however, their clinical applicability has been compromised by parallel findings of severe toxic effects. Recently developed synthetic NB aminoglycosides have demonstrated significantly improved effects compared to gentamicin evident in substantially higher suppression and reduced acute toxicity in vitro. RESULTS: We performed comparative study of suppression effects of the novel NB54 and gentamicin on three MECP2 nonsense mutations (R294X, R270X and R168X) common in RTT, using ex vivo treatment of primary fibroblasts from RTT patients harboring these mutations and testing for the C-terminal containing full-length MeCP2. We observed that NB54 induces dose-dependent suppression of MECP2 nonsense mutations more efficiently than gentamicin, which was evident at concentrations as low as 50 µg/ml. NB54 read-through activity was mutation specific, with maximal full-length MeCP2 recovery in R168X (38%), R270X (27%) and R294X (18%). In addition, the recovered MeCP2 was translocated to the cell nucleus and moreover led to parallel increase in one of the most important MeCP2 downstream effectors, the brain derived neurotrophic factor (BDNF). CONCLUSION: Our findings suggest that NB54 may induce restoration of the potentially functional MeCP2 in primary RTT fibroblasts and encourage further studies of NB54 and other rationally designed aminoglycoside derivatives as potential therapeutic agents for nonsense MECP2 mutations in RTT

    Is the first enzyme of the shikimate pathway, 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (tyrosine sensitive), a copper metalloenzyme?

    No full text
    3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (tyrosine sensitive) was purified from Escherichia coli carrying the plasmid pKB45. Enzyme of high specific catalytic activity (70 mu/mg) was obtained from cells grown only to the early log phase. The purified protein contained Cu(II) and showed an absorption band at 350 nm. Metal-free, catalytically inactive apoenzyme could be produced by dialysis against cyanide ion, and the holoenzyme could be reconstituted in terms of both catalytic activity and A350 by the binding of one Cu(II) ion per enzyme subunit. Zn(II) also reactivated the apoenzyme to about 50% of the level seen with Cu(II), although in this case no band appeared at 350 nm. In contrast to earlier reports that the enzyme contains substoichiometric levels of iron, insignificant amounts of iron were found in the isolated enzyme, and neither Fe(II) nor FE(III) regenerated either an absorption band at 350 nm or any catalytic activity from the apoenzyme. The evident preference of the enzyme as isolated for (Cu)II suggests that the synthase might naturally be a copper metalloenzyme

    Aminoglycoside-induced premature stop codon read-through of mucopolysaccharidosis type I patient Q70X and W402X mutations in cultured cells

    No full text
    Series: JIMD Reports, 2192-8304 ; 13The premature stop codon mutations, Q70X and W402X, are the most common α-l-iduronidase gene (IDUA) mutations in mucopolysaccharidosis type I (MPS I) patients. Read-through drugs have been used to suppress premature stop codons, and this can potentially be used to treat patients who have this type of mutation. We examined the effects of aminoglycoside treatment on the IDUA mutations Q70X and W402X in cultured cells and show that 4,5-disubstituted aminoglycosides induced more read-through for the W402X mutation, while 4,6-disubstituted aminoglycosides promoted more read-through for the Q70X mutation: lividomycin (4,5-disubstituted) induced a 7.8-fold increase in α-l-iduronidase enzyme activity for the W402X mutation; NB54 (4,5-disubstituted) induced a 3.7 fold increase in the amount of α-l-iduronidase enzyme activity for the W402X mutation, but had less effect on the Q70X mutation, whereas gentamicin (4,6-disubstituted) had the reverse effect on read-through for both mutations. The predicted mRNA secondary structural changes for both mutations were markedly different, which may explain these different effects on read-through for these two premature stop codons.Makoto Kamei, Karissa Kasperski, Maria Fuller, Emma J. Parkinson-Lawrence, Litsa Karageorgos, Valery Belakhov, Timor Baasov, John J. Hopwood, Doug A. Brook
    corecore