195 research outputs found

    Robust evolution system for Numerical Relativity

    Get PDF
    The paper combines theoretical and applied ideas which have been previously considered separately into a single set of evolution equations for Numerical Relativity. New numerical ingredients are presented which avoid gauge pathologies and allow one to perform robust 3D calculations. The potential of the resulting numerical code is demonstrated by using the Schwarzschild black hole as a test-bed. Its evolution can be followed up to times greater than one hundred black hole masses.Comment: 11 pages, 4 figures; figure correcte

    Cauchy boundaries in linearized gravitational theory

    Get PDF
    We investigate the numerical stability of Cauchy evolution of linearized gravitational theory in a 3-dimensional bounded domain. Criteria of robust stability are proposed, developed into a testbed and used to study various evolution-boundary algorithms. We construct a standard explicit finite difference code which solves the unconstrained linearized Einstein equations in the 3+1 formulation and measure its stability properties under Dirichlet, Neumann and Sommerfeld boundary conditions. We demonstrate the robust stability of a specific evolution-boundary algorithm under random constraint violating initial data and random boundary data.Comment: 23 pages including 3 figures and 2 tables, revte

    The constraints as evolution equations for numerical relativity

    Full text link
    The Einstein equations have proven surprisingly difficult to solve numerically. A standard diagnostic of the problems which plague the field is the failure of computational schemes to satisfy the constraints, which are known to be mathematically conserved by the evolution equations. We describe a new approach to rewriting the constraints as first-order evolution equations, thereby guaranteeing that they are satisfied to a chosen accuracy by any discretization scheme. This introduces a set of four subsidiary constraints which are far simpler than the standard constraint equations, and which should be more easily conserved in computational applications. We explore the manner in which the momentum constraints are already incorporated in several existing formulations of the Einstein equations, and demonstrate the ease with which our new constraint-conserving approach can be incorporated into these schemes.Comment: 10 pages, updated to match published versio

    Constraint propagation in the family of ADM systems

    Full text link
    The current important issue in numerical relativity is to determine which formulation of the Einstein equations provides us with stable and accurate simulations. Based on our previous work on "asymptotically constrained" systems, we here present constraint propagation equations and their eigenvalues for the Arnowitt-Deser-Misner (ADM) evolution equations with additional constraint terms (adjusted terms) on the right hand side. We conjecture that the system is robust against violation of constraints if the amplification factors (eigenvalues of Fourier-component of the constraint propagation equations) are negative or pure-imaginary. We show such a system can be obtained by choosing multipliers of adjusted terms. Our discussion covers Detweiler's proposal (1987) and Frittelli's analysis (1997), and we also mention the so-called conformal-traceless ADM systems.Comment: 11 pages, RevTeX, 2 eps figure

    Generalized harmonic formulation in spherical symmetry

    Get PDF
    In this pedagogically structured article, we describe a generalized harmonic formulation of the Einstein equations in spherical symmetry which is regular at the origin. The generalized harmonic approach has attracted significant attention in numerical relativity over the past few years, especially as applied to the problem of binary inspiral and merger. A key issue when using the technique is the choice of the gauge source functions, and recent work has provided several prescriptions for gauge drivers designed to evolve these functions in a controlled way. We numerically investigate the parameter spaces of some of these drivers in the context of fully non-linear collapse of a real, massless scalar field, and determine nearly optimal parameter settings for specific situations. Surprisingly, we find that many of the drivers that perform well in 3+1 calculations that use Cartesian coordinates, are considerably less effective in spherical symmetry, where some of them are, in fact, unstable.Comment: 47 pages, 15 figures. v2: Minor corrections, including 2 added references; journal version

    Advantages of modified ADM formulation: constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura system

    Get PDF
    Several numerical relativity groups are using a modified ADM formulation for their simulations, which was developed by Nakamura et al (and widely cited as Baumgarte-Shapiro-Shibata-Nakamura system). This so-called BSSN formulation is shown to be more stable than the standard ADM formulation in many cases, and there have been many attempts to explain why this re-formulation has such an advantage. We try to explain the background mechanism of the BSSN equations by using eigenvalue analysis of constraint propagation equations. This analysis has been applied and has succeeded in explaining other systems in our series of works. We derive the full set of the constraint propagation equations, and study it in the flat background space-time. We carefully examine how the replacements and adjustments in the equations change the propagation structure of the constraints, i.e. whether violation of constraints (if it exists) will decay or propagate away. We conclude that the better stability of the BSSN system is obtained by their adjustments in the equations, and that the combination of the adjustments is in a good balance, i.e. a lack of their adjustments might fail to obtain the present stability. We further propose other adjustments to the equations, which may offer more stable features than the current BSSN equations.Comment: 10 pages, RevTeX4, added related discussion to gr-qc/0209106, the version to appear in Phys. Rev.

    Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity

    Get PDF
    We study the stability properties of the standard ADM formulation of the 3+1 evolution equations of general relativity through linear perturbations of flat spacetime. We focus attention on modes with zero speed of propagation and conjecture that they are responsible for instabilities encountered in numerical evolutions of the ADM formulation. These zero speed modes are of two kinds: pure gauge modes and constraint violating modes. We show how the decoupling of the gauge by a conformal rescaling can eliminate the problem with the gauge modes. The zero speed constraint violating modes can be dealt with by using the momentum constraints to give them a finite speed of propagation. This analysis sheds some light on the question of why some recent reformulations of the 3+1 evolution equations have better stability properties than the standard ADM formulation.Comment: 15 pages, 9 figures. Added a new section, plus incorporated many comments made by refere

    Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors

    Get PDF
    [EN] Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA beta-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited Delta NHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.This work was supported by Ministerio de Economia y Competitividad (MINECO), Fondo Europeo de Desarrollo Regional (FEDER) and Universitat Jaume I through grants No. AGL201676574-R, UJI-B2016-23/UJI-B2016-24 to A.G-C. and V.A. and MINECO, FEDER and Consejo Superior de Investigaciones Cientificas (CSIC) through grant BIO2014-52537-R to P.L.R. S.I.Z. and M.M. were supported by predoctoral grants from Universitat Jaume I and Generalitat Valenciana, respectively. M.G.G. was recipient of a "JAE-DOC" contract from the CSIC. Mass spectrometry analyses were performed at the central facilities (Servei Central d'Instrumentacio Cientifica, SCIC) of Universitat Jaume I.Arbona, V.; Zandalinas, SI.; Manzi, M.; González Guzmán, M.; Rodríguez Egea, PL.; Gómez-Cadenas, A. (2017). Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Plant Molecular Biology. 93(6):623-640. https://doi.org/10.1007/s11103-017-0587-7S623640936Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2008) Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp Bot 59:2717–2733. doi: 10.1093/jxb/ern138Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio G, Rodriguez PL (2012) Selective inhibition of clade a phosphatases type 2 C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980. doi: 10.1104/pp.111.188623Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio G, Fernandez M, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, Rodriguez PL (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:491–931. doi: 10.1104/pp.112.208678Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250. doi: 10.1007/s00344-008-9051-xArbona V, López-climent MF, Pérez-Clemente RM, Gómez-cadenas A (2009) Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ Exp Bot 66:135–142. doi: 10.1016/j.envexpbot.2008.12.011Argamasilla R, Gómez-Cadenas A, Arbona V (2013) Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions. J Plant Growth Regul 33:169–180. doi: 10.1007/s00344-013-9359-zBaron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59. doi: 10.1016/j.plantsci.2012.03.001Benschop JJ, Millenaar FF, Smeets ME, Van Zanten M, Voesenek LACJ, Peeters AJM (2007) Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol 143:1013–1023Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916. doi: 10.1105/tpc.112.098277De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306. doi: 10.1111/j.1399-3054.2012.01659.xDupeux F, Santiago J, Betz K, Twycross J, Park S-Y, Rodriguez L, Gonzalez-Guzman M, Jensen MR, Krasnogor N, Blackledge M, Holdsworth M, Cutler SR, Rodriguez PL, Márquez JA (2011) A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J 30:4171–4184. doi: 10.1038/emboj.2011.294Finkelstein RR, Rock CD (2002) Abscisic Acid biosynthesis and response. Arabidopsis Book 1:e0058. doi: 10.1199/tab.0058Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc Natl Acad Sci U S A 111:5741–5746. doi: 10.1073/pnas.1322085111Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427. doi: 10.1105/tpc.110.080325Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez M a, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodriguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65:1–14. doi: 10.1093/jxb/eru219González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846. doi: 10.1105/tpc.002477.developmentHsu F-C, Chou M-Y, Peng H-P, Chou S-J, Shih M-C (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS ONE 6:e28888. doi: 10.1371/journal.pone.0028888Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic Acid 8-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 860:849–860. doi: 10.1104/pp.118.3.849Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108. doi: 10.1093/jxb/ers326Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60. doi: 10.1111/j.1365-3040.2011.02426.xLiu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589. doi: 10.1111/pbi.12162Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8. doi: 10.1093/pcp/pcs185Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107. doi: 10.1104/pp.106.079475.1Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA 110:12132–12137. doi: 10.1073/pnas.1305919110Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross ARS, Abrams SR, Bowles DJ (2006) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502. doi: 10.1111/j.1365-313X.2006.02701.xRitchie M, Phipson B, Wu D, Hu Y, Law C, Shi W, Smyth G (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645. doi: 10.1016/j.plaphy.2011.03.003Romero P, Lafuente MT, Rodrigo MJ (2012a) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945Romero P, Rodrigo MJ, Alférez F, Ballester A-R, González-Candelas L, Zacarías L, Lafuente MT (2012b) Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant. J Exp Bot 63:2753–2767. doi: 10.1093/jxb/err461Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S-I, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298. doi: 10.1093/pcp/pcm003Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Márquez JA, Rodriguez PL (2012) Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci 182:3–11. doi: 10.1016/j.plantsci.2010.11.014Schroeder JI, Nambara E (2006) A quick release mechanism for abscisic acid. Cell 126:1023–1025. doi: 10.1016/j.cell.2006.09.001Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632. doi: 10.1093/jxb/erq446Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17:131–137. doi: 10.1626/pps.17.131Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 61:25–35. doi: 10.1111/j.1365-313X.2009.04025.xTanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613. doi: 10.1111/j.1365-313X.2012.04901.xValdés AE, Övernäs E, Johansson H, Rada-Iglesias A, Engström P (2012) The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol 80:405–418. doi: 10.1007/s11103-012-9956-4Weng J-K, Ye M, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893Yamaguchi M, Sharp RE (2010) Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ 33:590–603. doi: 10.1111/j.1365-3040.2009.02064.xYoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21C:133–139. doi: 10.1016/j.pbi.2014.07.009Zhao Y, Xing L, Wang X, Hou Y-H, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683. doi: 10.1007/s11103-008-9298-

    Persistent wheezing as manifestation of esophageal tubular duplication cyst

    Get PDF
    Duplications of esophagus are rare congenital anomalies and the second most common duplications of the gastrointestinal tract. This form of bronchopulmonary foregut malformation may appear as a cystic mediastinal mass. On chest radiographs they may be visible as middle or posterior masses. On CT they are well marginated and oppose the esophagus. Usually they are asymptomatic, unless they become infected or cause obstruction. We report a case of thoracic tubular duplication cyst in a 10-month-old boy who presented with persistent wheezing that was unsuccessfully treated in out-patient services
    corecore