261 research outputs found

    Optically probing symmetry breaking in the chiral magnet Cu2OSeO3

    Get PDF
    We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the charge-transfer gap. These crystal-field excitations are optically allowed due to the lack of inversion symmetry at the Cu sites. Optical polarization rotation measurements were used to study the structural chirality and magnetic order. The temperature dependence of the natural optical rotation, originating in the chiral crystal structure, provides evidence for a finite magneto-electric effect in the helimagnetic phase. We find a large magneto-optical susceptibility on the order of V(540nm)~10^4 rad/(T*m) in the helimagnetic phase and a maximum Faraday rotation of ~165deg/mm in the ferrimagnetic phase. The large value of V can be explained by considering spin cluster formation and the relative ease of domain reorientation in this metamagnetic material. The magneto-optical activity allows us to map the magnetic phase diagram, including the skyrmion lattice phase. In addition to this, we probe and discuss the nature of the various magnetic phase transitions in Cu2OSeO3.Comment: 9 pages, 10 figure

    Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr2O4 films

    Get PDF
    We report on the spin-Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) in multiferroic CoCr2O4 (CCO) spinel thin films with Pt contacts. We observe a large enhancement of both signals below the spin-spiral (Ts = 28 K) and the spin lock-in transitions (T_{lock_in} = 14 K). The SMR and SSE response in the spin lock-in phase are one order of magnitude larger than those observed at the ferrimagnetic transition temperature (Tc = 94 K), which indicates that the interaction between spins at the Pt|CCO interface is more efficient in the non-collinear magnetic state below Ts and T_{lock-in}. At T > Tc, magnetic field-induced SMR and SSE signals are observed, which can be explained by a high interface susceptibility. Our results show that the spin transport at the Pt|CCO interface is sensitive to the magnetic phases but cannot be explained solely by the bulk magnetization

    Fractal Antennas for Wireless Communications

    Get PDF
    When the length of the antenna is less than a quarter of the wavelength of the operating frequency, good radiation properties are difficult to obtain. However, size limitations can be overcome in this case using a fractal geometry antenna. The shape is repeated in a limited size such that the total length of the antenna is increased to match, for example, half of the wavelength of the corresponding desired frequency. Many fractal geometries, e.g., the tree, Koch, Minkowski, and Hilbert fractals, are available. This chapter describes the details of designing, simulations, and experimental measurements of fractal antennas. Based on dimensional geometry in terms of desired frequency bands, the characteristics of each iteration are studied carefully to improve the process of designing the antennas. In depth, the surface current distribution is investigated and analyzed to enhance the circular polarization radiation and axial ratio bandwidth (ARBW). Both, simulation and experimental, results are discussed and compared. Two types of fractal antennas are proposed. The first proposed fractal antenna has a new structure configured via a five-stage process. The second proposed fractal antenna has a low profile, wherein the configuration of the antenna was based on three iterations

    Equivalent Modulus of Asphalt Concrete Layers

    Get PDF
    A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete layers within a pavement structure by using their individual MR values. To achieve this aim, eight samples were cored from Iraqi Expressway no. 1; they had three layers of asphalt and were tested to obtain the MR of each core by using the uniaxial repeated loading test at 25 and 40 °C. The samples were then cut to separate each layer individually and tested for MR at the same testing temperatures; thus, a total of 60 resilient modulus tests were conducted. A new approach was introduced to estimate the equivalent MR as a function of the MR value for each layer. The results matched the values obtained by KENPAVE analysis

    Growing Sugarcane for Energy Use

    Get PDF
    The increase in energy demand throughout the world, and the rise of greenhouse gas emissions has lead to the exploration of new energy sources. Sugarcane is already being used as a source of energy and is a growing industry. Sugarcane is currently being used to create ethanol and has the potential to be a competitive alternative to fossil fuels if other by-products of the plant are utilized

    Magnetic functionality of thin film perovskite hybrids

    Get PDF
    Organic-inorganic perovskite-like hybrids combine the properties of both the perovskite structure and metal-organic framework compounds. We investigated the magnetic properties of a Cu-based hybrid material grown as a thin film by the Langmuir-Blodgett technique. We show that the long alkyl spacers in the hybrid thin film only slightly reduce the ferromagnetic transition temperature in comparison with the bulk. Most interestingly, the single ion anisotropy is larger for the Cu-based hybrid film than for the bulk hybrid. The hybrid thin film consists of two polymorphs in which the ferromagnetic domains are effectively pinned by an antiferromagnetic phase. This leads to a large enhancement of the coercive field enabling memory functionality. (C) 2018 Author(s).</p

    Probing current-induced magnetic elds in AujYIG heterostructures with low-energy muon spin spectroscopy

    Get PDF
    We investigated the depth dependence of current-induced magnetic fields in a bilayer of a normal metal (Au) and a ferrimagnetic insulator (Yttrium Iron Garnet-YIG) by using low energy muon spin spectroscopy (LE- lSR). This allows us to explore how these fields vary from the Au surface down to the buried Au vertical bar YIG interface, which is relevant to study physics like the spin-Hall effect. We observed a maximum shift of 0.4 G in the internal field of muons at the surface of Au film which is in close agreement with the value expected for Oersted fields. As muons are implanted closer to the AujYIG interface, the shift is strongly suppressed, which we attribute to the dipolar fields present at the AujYIG interface. Combining our measurements with modeling, we show that dipolar fields caused by the finite roughness of the AujYIG interface consistently explain our observations. Our results, therefore, gauge the limits on the spatial resolution and the sensitivity of LE- mu SR to the roughness of the buried magnetic interfaces, a prerequisite for future studies addressing current induced fields caused by the spin-accumulations due to the spin-Hall effect. Published by AIP Publishing

    Fourth-generation SM imprints in B -> K^*l^+l^- decays with polarized K^*

    Full text link
    The implication of the fourth-generation quarks in the B -> K^*l^+l^- (l=mu,tau) decays, when K^* meson is longitudinally or transversely polarized, is presented. In this context, the dependence of the branching ratio with polarized K^* and the helicity fractions (f_{L,T}) of K^* meson are studied. It is observed that the polarized branching ratios as well as helicity fractions are sensitive to the NP parameters, especially when the final state leptons are tauons. Hence the measurements of these observables at LHC can serve as a good tool to investigate the indirect searches of new physics beyond the Standard Model.Comment: 13 pages, 10 figures, V2: some of the graphs are modified according to the new data from recent experiments. arXiv admin note: substantial text overlap with arXiv:1107.569
    corecore