1,393 research outputs found

    Dealing with inaccurate face detection for automatic gender recognition with partially occluded faces

    Get PDF
    Gender recognition problem has not been extensively studied in situations where the face cannot be accurately detected and it also can be partially occluded. In this contribution, a comparison of several characterisation methods of the face is presented and they are evaluated in four different experiments that simulate the previous scenario. Two of the characterization techniques are based on histograms, LBP and local contrast values, and the other one is a new kind of features, called Ranking Labels, that provide spatial information. Experiments have proved Ranking Labels description is the most reliable in inaccurate situation

    A Compact Representation of Histopathology Images using Digital Stain Separation & Frequency-Based Encoded Local Projections

    Full text link
    In recent years, histopathology images have been increasingly used as a diagnostic tool in the medical field. The process of accurately diagnosing a biopsy sample requires significant expertise in the field, and as such can be time-consuming and is prone to uncertainty and error. With the advent of digital pathology, using image recognition systems to highlight problem areas or locate similar images can aid pathologists in making quick and accurate diagnoses. In this paper, we specifically consider the encoded local projections (ELP) algorithm, which has previously shown some success as a tool for classification and recognition of histopathology images. We build on the success of the ELP algorithm as a means for image classification and recognition by proposing a modified algorithm which captures the local frequency information of the image. The proposed algorithm estimates local frequencies by quantifying the changes in multiple projections in local windows of greyscale images. By doing so we remove the need to store the full projections, thus significantly reducing the histogram size, and decreasing computation time for image retrieval and classification tasks. Furthermore, we investigate the effectiveness of applying our method to histopathology images which have been digitally separated into their hematoxylin and eosin stain components. The proposed algorithm is tested on the publicly available invasive ductal carcinoma (IDC) data set. The histograms are used to train an SVM to classify the data. The experiments showed that the proposed method outperforms the original ELP algorithm in image retrieval tasks. On classification tasks, the results are found to be comparable to state-of-the-art deep learning methods and better than many handcrafted features from the literature.Comment: Accepted for publication in the International Conference on Image Analysis and Recognition (ICIAR 2019

    Content-Based Video Retrieval in Historical Collections of the German Broadcasting Archive

    Full text link
    The German Broadcasting Archive (DRA) maintains the cultural heritage of radio and television broadcasts of the former German Democratic Republic (GDR). The uniqueness and importance of the video material stimulates a large scientific interest in the video content. In this paper, we present an automatic video analysis and retrieval system for searching in historical collections of GDR television recordings. It consists of video analysis algorithms for shot boundary detection, concept classification, person recognition, text recognition and similarity search. The performance of the system is evaluated from a technical and an archival perspective on 2,500 hours of GDR television recordings.Comment: TPDL 2016, Hannover, Germany. Final version is available at Springer via DO

    MinMax Radon Barcodes for Medical Image Retrieval

    Full text link
    Content-based medical image retrieval can support diagnostic decisions by clinical experts. Examining similar images may provide clues to the expert to remove uncertainties in his/her final diagnosis. Beyond conventional feature descriptors, binary features in different ways have been recently proposed to encode the image content. A recent proposal is "Radon barcodes" that employ binarized Radon projections to tag/annotate medical images with content-based binary vectors, called barcodes. In this paper, MinMax Radon barcodes are introduced which are superior to "local thresholding" scheme suggested in the literature. Using IRMA dataset with 14,410 x-ray images from 193 different classes, the advantage of using MinMax Radon barcodes over \emph{thresholded} Radon barcodes are demonstrated. The retrieval error for direct search drops by more than 15\%. As well, SURF, as a well-established non-binary approach, and BRISK, as a recent binary method are examined to compare their results with MinMax Radon barcodes when retrieving images from IRMA dataset. The results demonstrate that MinMax Radon barcodes are faster and more accurate when applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US

    Deep Regionlets for Object Detection

    Full text link
    In this paper, we propose a novel object detection framework named "Deep Regionlets" by establishing a bridge between deep neural networks and conventional detection schema for accurate generic object detection. Motivated by the abilities of regionlets for modeling object deformation and multiple aspect ratios, we incorporate regionlets into an end-to-end trainable deep learning framework. The deep regionlets framework consists of a region selection network and a deep regionlet learning module. Specifically, given a detection bounding box proposal, the region selection network provides guidance on where to select regions to learn the features from. The regionlet learning module focuses on local feature selection and transformation to alleviate local variations. To this end, we first realize non-rectangular region selection within the detection framework to accommodate variations in object appearance. Moreover, we design a "gating network" within the regionlet leaning module to enable soft regionlet selection and pooling. The Deep Regionlets framework is trained end-to-end without additional efforts. We perform ablation studies and conduct extensive experiments on the PASCAL VOC and Microsoft COCO datasets. The proposed framework outperforms state-of-the-art algorithms, such as RetinaNet and Mask R-CNN, even without additional segmentation labels.Comment: Accepted to ECCV 201

    Measurements and Variability of Arterial Blood Pressure and Heart Interval in Conscious and Anesthetized Dogs

    Get PDF
    No abstract availabl

    School-related stress among sixth-grade students - associations with academic buoyancy and temperament

    Get PDF
    The present study examined to what extent sixth-grade students’ academic buoyancy and temperament contributed to their school-related stress. A total of 845 students rated their school-related stress at the beginning and end of the school year and their academic buoyancy at the beginning of the year. Parents rated students’ effortful control and negative affectivity. The results showed that high academic buoyancy, high effortful control, and low negative affectivity at the beginning of the school year were related to lower school-related stress at the end of the school year, after controlling for gender, GPA, and previous level of stress. Effortful control and negative affectivity had no significant interaction effect with academic buoyancy on students’ school-related stress. The findings of the study suggest that interventions aiming at supporting students’ academic buoyancy may also decrease their feelings of school stress. In particular, students with high negative affectivity or low effortful control may need training in stress management skills

    AVEC 2011 – the first international Audio/Visual Emotion Challenge

    Get PDF
    Abstract. The Audio/Visual Emotion Challenge andWorkshop (AVEC 2011) is the first competition event aimed at comparison of multimedia processing and machine learning methods for automatic audio, visual and audiovisual emotion analysis, with all participants competing under strictly the same conditions. This paper first describes the challenge par-ticipation conditions. Next follows the data used – the SEMAINE corpus – and its partitioning into train, development, and test partitions for the challenge with labelling in four dimensions, namely activity, expectation, power, and valence. Further, audio and video baseline features are intro-duced as well as baseline results that use these features for the three sub-challenges of audio, video, and audiovisual emotion recognition
    • …
    corecore