35 research outputs found
Interaction-induced chiral p_x \pm i p_y superfluid order of bosons in an optical lattice
The study of superconductivity with unconventional order is complicated in
condensed matter systems by their extensive complexity. Optical lattices with
their exceptional precision and control allow one to emulate superfluidity
avoiding many of the complications of condensed matter. A promising approach to
realize unconventional superfluid order is to employ orbital degrees of freedom
in higher Bloch bands. In recent work, indications were found that bosons
condensed in the second band of an optical chequerboard lattice might exhibit
p_x \pm i p_y order. Here we present experiments, which provide strong evidence
for the emergence of p_x \pm i p_y order driven by the interaction in the local
p-orbitals. We compare our observations with a multi-band Hubbard model and
find excellent quantitative agreement
Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices
Orbital physics plays a significant role for a vast number of important
phenomena in complex condensed matter systems such as high-T
superconductivity and unconventional magnetism. In contrast, phenomena in
superfluids -- especially in ultracold quantum gases -- are commonly well
described by the lowest orbital and a real order parameter. Here, we report on
the observation of a novel multi-orbital superfluid phase with a {\it complex}
order parameter in binary spin mixtures. In this unconventional superfluid, the
local phase angle of the complex order parameter is continuously twisted
between neighboring lattice sites. The nature of this twisted superfluid
quantum phase is an interaction-induced admixture of the p-orbital favored by
the graphene-like band structure of the hexagonal optical lattice used in the
experiment. We observe a second-order quantum phase transition between the
normal superfluid (NSF) and the twisted superfluid phase (TSF) which is
accompanied by a symmetry breaking in momentum space. The experimental results
are consistent with calculated phase diagrams and reveal fundamentally new
aspects of orbital superfluidity in quantum gas mixtures. Our studies might
bridge the gap between conventional superfluidity and complex phenomena of
orbital physics.Comment: 5 pages, 4 figure
Topological semimetal in a fermionic optical lattice
Optical lattices play a versatile role in advancing our understanding of
correlated quantum matter. The recent implementation of orbital degrees of
freedom in chequerboard and hexagonal optical lattices opens up a new thrust
towards discovering novel quantum states of matter, which have no prior analogs
in solid state electronic materials. Here, we demonstrate that an exotic
topological semimetal emerges as a parity-protected gapless state in the
orbital bands of a two-dimensional fermionic optical lattice. The new quantum
state is characterized by a parabolic band-degeneracy point with Berry flux
, in sharp contrast to the flux of Dirac points as in graphene. We
prove that the appearance of this topological liquid is universal for all
lattices with D point group symmetry as long as orbitals with opposite
parities hybridize strongly with each other and the band degeneracy is
protected by odd parity. Turning on inter-particle repulsive interactions, the
system undergoes a phase transition to a topological insulator whose
experimental signature includes chiral gapless domain-wall modes, reminiscent
of quantum Hall edge states.Comment: 6 pages, 3 figures and Supplementary Informatio
Orbital superfluidity in the -band of a bipartite optical square lattice
The successful emulation of the Hubbard model in optical lattices has
stimulated world wide efforts to extend their scope to also capture more
complex, incompletely understood scenarios of many-body physics. Unfortunately,
for bosons, Feynmans fundamental "no-node" theorem under very general
circumstances predicts a positive definite ground state wave function with
limited relevance for many-body systems of interest. A promising way around
Feynmans statement is to consider higher bands in optical lattices with more
than one dimension, where the orbital degree of freedom with its intrinsic
anisotropy due to multiple orbital orientations gives rise to a structural
diversity, highly relevant, for example, in the area of strongly correlated
electronic matter. In homogeneous two-dimensional optical lattices, lifetimes
of excited bands on the order of a hundred milliseconds are possible but the
tunneling dynamics appears not to support cross-dimensional coherence. Here we
report the first observation of a superfluid in the -band of a bipartite
optical square lattice with -orbits and -orbits arranged in a
chequerboard pattern. This permits us to establish full cross-dimensional
coherence with a life-time of several ten milliseconds. Depending on a small
adjustable anisotropy of the lattice, we can realize real-valued striped
superfluid order parameters with different orientations or a
complex-valued order parameter, which breaks time reversal
symmetry and resembles the -flux model proposed in the context of high
temperature superconductors. Our experiment opens up the realms of orbital
superfluids to investigations with optical lattice models.Comment: 5 pages, 5 figure
Novel Arenavirus Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from CĂ´te d'Ivoire: Implications for Evolution of Arenaviruses in Africa
This study aimed to identify new arenaviruses and gather insights in the evolution of arenaviruses in Africa. During 2003 through 2005, 1,228 small mammals representing 14 different genera were trapped in 9 villages in south, east, and middle west of Côte d'Ivoire. Specimens were screened by pan-Old World arenavirus RT-PCRs targeting S and L RNA segments as well as immunofluorescence assay. Sequences of two novel tentative species of the family Arenaviridae, Menekre and Gbagroube virus, were detected in Hylomyscus sp. and Mus (Nannomys) setulosus, respectively. Arenavirus infection of Mus (Nannomys) setulosus was also demonstrated by serological testing. Lassa virus was not found, although 60% of the captured animals were Mastomys natalensis. Complete S RNA and partial L RNA sequences of the novel viruses were recovered from the rodent specimens and subjected to phylogenetic analysis. Gbagroube virus is a closely related sister taxon of Lassa virus, while Menekre virus clusters with the Ippy/Mobala/Mopeia virus complex. Reconstruction of possible virus–host co-phylogeny scenarios suggests that, within the African continent, signatures of co-evolution might have been obliterated by multiple host-switching events
Recommended from our members
Molecular Diagnostics for Lassa Fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons Learnt from Two Years of Laboratory Operation
Background: Lassa fever is a viral hemorrhagic fever endemic in West Africa. However, none of the hospitals in the endemic areas of Nigeria has the capacity to perform Lassa virus diagnostics. Case identification and management solely relies on non-specific clinical criteria. The Irrua Specialist Teaching Hospital (ISTH) in the central senatorial district of Edo State struggled with this challenge for many years. Methodology/Principal Findings A laboratory for molecular diagnosis of Lassa fever, complying with basic standards of diagnostic PCR facilities, was established at ISTH in 2008. During 2009 through 2010, samples of 1,650 suspected cases were processed, of which 198 (12%) tested positive by Lassa virus RT-PCR. No remarkable demographic differences were observed between PCR-positive and negative patients. The case fatality rate for Lassa fever was 31%. Nearly two thirds of confirmed cases attended the emergency departments of ISTH. The time window for therapeutic intervention was extremely short, as 50% of the fatal cases died within 2 days of hospitalization—often before ribavirin treatment could be commenced. Fatal Lassa fever cases were older (p = 0.005), had lower body temperature (p<0.0001), and had higher creatinine (p<0.0001) and blood urea levels (p<0.0001) than survivors. Lassa fever incidence in the hospital followed a seasonal pattern with a peak between November and March. Lassa virus sequences obtained from the patients originating from Edo State formed—within lineage II—a separate clade that could be further subdivided into three clusters. Conclusions/Significance: Lassa fever case management was improved at a tertiary health institution in Nigeria through establishment of a laboratory for routine diagnostics of Lassa virus. Data collected in two years of operation demonstrate that Lassa fever is a serious public health problem in Edo State and reveal new insights into the disease in hospitalized patients.Organismic and Evolutionary Biolog
Controlling coherence via tuning of the population imbalance in a bipartite optical lattice
The control of transport properties is a key tool at the basis of many technologically relevant effects in condensed matter. The clean and precisely controlled environment of ultracold atoms in optical lattices allows one to prepare simplified but instructive models, which can help to better understand the underlying physical mechanisms. Here we show that by tuning a structural deformation of the unit cell in a bipartite optical lattice, one can induce a phase transition from a superfluid into various Mott insulating phases forming a shell structure in the superimposed harmonic trap. The Mott shells are identified via characteristic features in the visibility of Bragg maxima in momentum spectra. The experimental findings are explained by Gutzwiller mean-field and quantum Monte Carlo calculations. Our system bears similarities with the loss of coherence in cuprate superconductors, known to be associated with the doping induced buckling of the oxygen octahedra surrounding the copper sites
Interaction-induced chiral px ± ipy superfluid order of bosons in an optical lattice
The study of superconductivity with unconventional order is complicated in condensed matter systems by their extensive complexity. Optical lattices with their exceptional precision and control allow one to emulate superfluidity avoiding many of the complications of condensed matter. A promising approach to realize unconventional superfluid order is to employ orbital degrees of freedom in higher Bloch bands. In recent work, indications were found that bosons condensed in the second band of an optical chequerboard lattice might exhibit px ± i py order. Here we present experiments, which provide strong evidence for the emergence of px ± i py order driven by the interaction in the local p-orbitals. We compare our observations with a multi-band Hubbard model and find excellent quantitative agreement