23,215 research outputs found

    A spherical Hopfield model

    Full text link
    We introduce a spherical Hopfield-type neural network involving neurons and patterns that are continuous variables. We study both the thermodynamics and dynamics of this model. In order to have a retrieval phase a quartic term is added to the Hamiltonian. The thermodynamics of the model is exactly solvable and the results are replica symmetric. A Langevin dynamics leads to a closed set of equations for the order parameters and effective correlation and response function typical for neural networks. The stationary limit corresponds to the thermodynamic results. Numerical calculations illustrate our findings.Comment: 9 pages Latex including 3 eps figures, Addition of an author in the HTML-abstract unintentionally forgotten, no changes to the manuscrip

    On the Ricci tensor in type II B string theory

    Full text link
    Let \nabla be a metric connection with totally skew-symmetric torsion \T on a Riemannian manifold. Given a spinor field Ψ\Psi and a dilaton function Φ\Phi, the basic equations in type II B string theory are \bdm \nabla \Psi = 0, \quad \delta(\T) = a \cdot \big(d \Phi \haken \T \big), \quad \T \cdot \Psi = b \cdot d \Phi \cdot \Psi + \mu \cdot \Psi . \edm We derive some relations between the length ||\T||^2 of the torsion form, the scalar curvature of \nabla, the dilaton function Φ\Phi and the parameters a,b,μa,b,\mu. The main results deal with the divergence of the Ricci tensor \Ric^{\nabla} of the connection. In particular, if the supersymmetry Ψ\Psi is non-trivial and if the conditions \bdm (d \Phi \haken \T) \haken \T = 0, \quad \delta^{\nabla}(d \T) \cdot \Psi = 0 \edm hold, then the energy-momentum tensor is divergence-free. We show that the latter condition is satisfied in many examples constructed out of special geometries. A special case is a=ba = b. Then the divergence of the energy-momentum tensor vanishes if and only if one condition \delta^{\nabla}(d \T) \cdot \Psi = 0 holds. Strong models (d \T = 0) have this property, but there are examples with \delta^{\nabla}(d \T) \neq 0 and \delta^{\nabla}(d \T) \cdot \Psi = 0.Comment: 9 pages, Latex2

    Nucleosynthesis and Clump Formation in a Core Collapse Supernova

    Get PDF
    High-resolution two-dimensional simulations were performed for the first five minutes of the evolution of a core collapse supernova explosion in a 15 solar mass blue supergiant progenitor. The computations start shortly after bounce and include neutrino-matter interactions by using a light-bulb approximation for the neutrinos, and a treatment of the nucleosynthesis due to explosive silicon and oxygen burning. We find that newly formed iron-group elements are distributed throughout the inner half of the helium core by Rayleigh-Taylor instabilities at the Ni+Si/O and C+O/He interfaces, seeded by convective overturn during the early stages of the explosion. Fast moving nickel mushrooms with velocities up to about 4000 km/s are observed. This offers a natural explanation for the mixing required in light curve and spectral synthesis studies of Type Ib explosions. A continuation of the calculations to later times, however, indicates that the iron velocities observed in SN 1987 A cannot be reproduced because of a strong deceleration of the clumps in the dense shell left behind by the shock at the He/H interface.Comment: 8 pages, LaTeX, 2 postscript figures, 2 gif figures, shortened and slightly revised text and references, accepted by ApJ Letter

    Color singlet suppression of quark-gluon plasma formation

    Get PDF
    The rate of quark-gluon plasma droplet nucleation in superheated hadronic matter is calculated within the MIT bag model. The requirements of color singletness and (to less extent) fixed momentum suppress the nucleation rate by many orders of magnitude, making thermal nucleation of quark-gluon plasma droplets unlikely in ultrarelativistic heavy-ion collisions if the transition is first order and reasonably described by the bag model.Comment: 9 pages, 3 ps figures. To appear in PhysRevC (April 1996

    Solvable glassy system: static versus dynamical transition

    Full text link
    A directed polymer is considered on a flat substrate with randomly located parallel ridges. It prefers to lie inside wide regions between the ridges. When the transversel width W=exp(λL1/3)W=\exp(\lambda L^{1/3}) is exponential in the longitudinal length LL, there can be a large number expL1/3\sim \exp L^{1/3} of available wide states. This ``complexity'' causes a phase transition from a high temperature phase where the polymer lies in the widest lane, to a glassy low temperature phase where it lies in one of many narrower lanes. Starting from a uniform initial distribution of independent polymers, equilibration up to some exponential time scale induces a sharp dynamical transition. When the temperature is slowly increased with time, this occurs at a tunable temperature. There is an asymmetry between cooling and heating. The structure of phase space in the low temperature non-equilibrium glassy phase is of a one-level tree.Comment: 4 pages revte

    Killing spinors in supergravity with 4-fluxes

    Full text link
    We study the spinorial Killing equation of supergravity involving a torsion 3-form \T as well as a flux 4-form \F. In dimension seven, we construct explicit families of compact solutions out of 3-Sasakian geometries, nearly parallel \G_2-geometries and on the homogeneous Aloff-Wallach space. The constraint \F \cdot \Psi = 0 defines a non empty subfamily of solutions. We investigate the constraint \T \cdot \Psi = 0, too, and show that it singles out a very special choice of numerical parameters in the Killing equation, which can also be justified geometrically
    corecore