3 research outputs found

    Robustness of Visual Explanations to Common Data Augmentation

    Full text link
    As the use of deep neural networks continues to grow, understanding their behaviour has become more crucial than ever. Post-hoc explainability methods are a potential solution, but their reliability is being called into question. Our research investigates the response of post-hoc visual explanations to naturally occurring transformations, often referred to as augmentations. We anticipate explanations to be invariant under certain transformations, such as changes to the colour map while responding in an equivariant manner to transformations like translation, object scaling, and rotation. We have found remarkable differences in robustness depending on the type of transformation, with some explainability methods (such as LRP composites and Guided Backprop) being more stable than others. We also explore the role of training with data augmentation. We provide evidence that explanations are typically less robust to augmentation than classification performance, regardless of whether data augmentation is used in training or not.Comment: Accepted to The 2nd Explainable AI for Computer Vision (XAI4CV) Workshop at CVPR 202

    On convex conceptual regions in deep network representations

    Full text link
    The current study of human-machine alignment aims at understanding the geometry of latent spaces and the correspondence to human representations. G\"ardenfors' conceptual spaces is a prominent framework for understanding human representations. Convexity of object regions in conceptual spaces is argued to promote generalizability, few-shot learning, and intersubject alignment. Based on these insights, we investigate the notion of convexity of concept regions in machine-learned latent spaces. We develop a set of tools for measuring convexity in sampled data and evaluate emergent convexity in layered representations of state-of-the-art deep networks. We show that convexity is robust to basic re-parametrization, hence, meaningful as a quality of machine-learned latent spaces. We find that approximate convexity is pervasive in neural representations in multiple application domains, including models of images, audio, human activity, text, and brain data. We measure convexity separately for labels (i.e., targets for fine-tuning) and other concepts. Generally, we observe that fine-tuning increases the convexity of label regions, while for more general concepts, it depends on the alignment of the concept with the fine-tuning objective. We find evidence that pre-training convexity of class label regions predicts subsequent fine-tuning performance

    Image classification with symbolic hints using limited resources

    No full text
    Typical machine learning classification benchmark problems often ignore the full input data structures present in real-world classification problems. Here we aim to represent additional information as "hints" for classification. We show that under a specific realistic conditional independence assumption, the hint information can be included by late fusion. In two experiments involving image classification with hints taking the form of text metadata, we demonstrate the feasibility and performance of the fusion scheme. We fuse the output of pre-trained image classifiers with the output of pre-trained text models. We show that calibration of the pre-trained models is crucial for the performance of the fused model. We compare the performance of the fusion scheme with a mid-level fusion scheme based on support vector machines and find that these two methods tend to perform quite similarly, albeit the late fusion scheme has only negligible computational costs
    corecore