226 research outputs found

    A novel mutation of KIF11 in a child with 22q11.2 deletion syndrome associated with MCLMR

    Get PDF
    Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR; OMIM 152950) is a rare autosomal dominantly inherited syndrome. Mutations in the kinesin family member 11 (KIF11) gene have been associated with this condition. Here, we report a de novo novel heterozygous missense mutation in exon 12 of the KIF11 gene [c.1402T>G; p.(Leu468Val)] in a boy with 22q11.2 microdeletion syndrome. His major features were microcephaly, ventricular septal defect, congenital lymphedema of the feet, and distinct facial appearance including upslanting palpebral fissures, a broad nose with rounded tip, anteverted nares, long philtrum with a thin upper lip, pointed chin, and prominent ears. His right eye was enucleated due to subretinal hemorrhage and retinal detachment at age 3 months. Lacunae of chorioretinal atrophy and the pale optic disc were present in the left eye. He also had a de novo 1.6-Mb microdeletion in the Di George/VCFS region of chromosome 22q11.2 in SNP array, which was confirmed by FISH analysis. In this study, for the first time, we describe the co-occurrence of a KIF11 mutation and 22q11.2 deletion syndrome in a patient with MCLMR

    Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H<sub>2</sub>-Dependent CO<sub>2</sub> Reduction to Metabolic Intermediates

    Get PDF
    Serpentinizing hydrothermal systems generate H2 as a reductant and harbor catalysts conducive to geochemical CO2 conversion into reduced carbon compounds that form the core of microbial autotrophic metabolism. This study characterizes mineral catalysts at hydrothermal vents by investigating the interactions between catalytically active cobalt sites and silica-based support materials on H2-dependent CO2 reduction. Heteroatom incorporated (Mg, Al, Ca, Ti, and Zr), ordered mesoporous silicas are applied as model support systems for the cobalt-based catalysts. It is demonstrated that all catalysts surveyed convert CO2 to methane, methanol, carbon monoxide, and low-molecular-weight hydrocarbons at 180 °C and 20 bar, but with different activity and selectivity depending on the support modification. The additional analysis of the condensed product phase reveals the formation of oxygenates such as formate and acetate, which are key intermediates in the ancient acetyl-coenzyme A pathway of carbon metabolism. The Ti-incorporated catalyst yielded the highest concentrations of formate (3.6 mM) and acetate (1.2 mM) in the liquid phase. Chemisorption experiments including H2 temperature-programmed reduction (TPR) and CO2 temperature-programmed desorption (TPD) in agreement with density functional theory (DFT) calculations of the adsorption energy of CO2 suggest metallic cobalt as the preferential adsorption site for CO2 compared to hardly reducible cobalt–metal oxide interface species. The ratios of the respective cobalt species vary depending on the interaction strength with the support materials. The findings reveal robust and biologically relevant catalytic activities of silica-based transition metal minerals in H2-rich CO2 fixation, in line with the idea that autotrophic metabolism emerged at hydrothermal vents

    Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT)

    Get PDF
    Catalysis is involved in around 85 % of manufacturing industry and contributes an estimated 25 % to the global domestic product, with the majority of the processes relying on heterogeneous catalysis. Despite the importance in different global segments, the fundamental understanding of heterogeneously catalysed processes lags substantially behind that achieved in other fields. The newly established Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT) targets innovative concepts that could contribute to the scientific developments needed in the research field to achieve net zero greenhouse gas emissions in the chemical industries. This Viewpoint Article presents some of our research activities and visions on the current and future challenges of heterogeneous catalysis regarding green industry and the circular economy by focusing explicitly on critical processes. Namely, hydrogen production, ammonia synthesis, and carbon dioxide reduction, along with new aspects of acetylene chemistry

    Tunable e<sub>g</sub> Orbital Occupancy in Heusler Compounds for Oxygen Evolution Reaction

    Get PDF
    Heusler compounds have potential in electrocatalysis because of their mechanical robustness, metallic conductivity, and wide tunability in the electronic structure and element compositions. This study reports the first application of Co2YZ-type Heusler compounds as electrocatalysts for the oxygen evolution reaction (OER). A range of Co2YZ crystals was synthesized through the arc-melting method and the eg orbital filling of Co was precisely regulated by varying Y and Z sites of the compound. A correlation between the eg orbital filling of reactive Co sites and OER activity was found for Co2MnZ compounds (Z=Ti, Al, V, and Ga), whereby higher catalytic current was achieved for eg orbital filling approaching unity. A similar trend of eg orbital filling on the reactivity of cobalt sites was also observed for other Heusler compounds (Co2VZ, Z=Sn and Ga). This work demonstrates proof of concept in the application of Heusler compounds as a new class of OER electrocatalysts, and the influence of the manipulation of the spin orbitals on their catalytic performance. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH Gmb

    Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (funcat)

    Get PDF
    Catalysis is involved in around 85 % of manufacturing industry and contributes an estimated 25 % to the global domestic product, with the majority of the processes relying on heterogeneous catalysis. Despite the importance in different global segments, the fundamental understanding of heterogeneously catalysed processes lags substantially behind that achieved in other fields. The newly established Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT) targets innovative concepts that could contribute to the scientific developments needed in the research field to achieve net zero greenhouse gas emissions in the chemical industries. This Viewpoint Article presents some of our research activities and visions on the current and future challenges of heterogeneous catalysis regarding green industry and the circular economy by focusing explicitly on critical processes. Namely, hydrogen production, ammonia synthesis, and carbon dioxide reduction, along with new aspects of acetylene chemistry

    Lipid-mediated Wnt protein stabilization enables serum-free culture of human organ stem cells

    Get PDF
    Wnt signalling proteins are essential for culture of human organ stem cells in organoids, but most Wnt protein formulations are poorly active in serum-free media. Here we show that purified Wnt3a protein is ineffective because it rapidly loses activity in culture media due to its hydrophobic nature, and its solubilization requires a detergent, CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), that interferes with stem cell self-renewal. By stabilizing the Wnt3a protein using phospholipids and cholesterol as carriers, we address both problems: Wnt activity remains stable in serum-free media, while non-toxic carriers allow the use of high Wnt concentrations. Stabilized Wnt3a supports strongly increased self-renewal of organ and embryonic stem cells and the serum-free establishment of human organoids from healthy and diseased intestine and liver. Moreover, the lipophilicity of Wnt3a protein greatly facilitates its purification. Our findings remove a major obstacle impeding clinical applications of adult stem cells and offer advantages for all cell culture uses of Wnt3a protein

    A catalog of chromospherically active binary stars (third edition)

    Full text link
    Chromospherically Active Binaries (CAB) catalogue have been revised and updated. With 203 new identifications, the number of CAB stars is increased to 409. Catalogue is available in electronic format where each system has various number of lines (sub-orders) with a unique order number. Columns contain data of limited number of selected cross references, comments to explain peculiarities and position of the binarity in case it belongs to a multiple system, classical identifications (RS CVn, BY Dra), brightness and colours, photometric and spectroscopic data, description of emission features (Ca II H&K, HαH_{\alpha}, UV, IR), X-Ray luminosity, radio flux, physical quantities and orbital information, where each basic entry are referenced so users can go original sources.Comment: 5 pages, including 2 figures and 3 tables, accepted for publication in MNRA

    Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62 million iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155±0.006. This shows that unexpectedly Fe and He, C, and O belong to the same class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class
    • …
    corecore