5 research outputs found

    Comparison of different strategies of utilizing fuzzy clustering in structure identification

    Get PDF
    Fuzzy systems approximate highly nonlinear systems by means of fuzzy "if-then" rules. In the literature, various algorithms are proposed for mining. These algorithms commonly utilize fuzzy clustering in structure identification. Basically, there are three different approaches in which one can utilize fuzzy clustering; the �first one is based on input space clustering, the second one considers clustering realized in the output space, while the third one is concerned with clustering realized in the combined input-output space. In this study, we analyze these three approaches. We discuss each of the algorithms in great detail and o¤er a thorough comparative analysis. Finally, we compare the performances of these algorithms in a medical diagnosis classi�cation problem, namely Aachen Aphasia Test. The experiment and the results provide a valuable insight about the merits and the shortcomings of these three clustering approaches

    Fuzzy Regression Models Beyond Fuzzy Rule Base Models

    No full text
    corecore