19 research outputs found

    Beacon v2 and Beacon networks: A "lingua franca" for federated data discovery in biomedical genomics, and beyond

    Full text link
    Beacon is a basic data discovery protocol issued by the Global Alliance for Genomics and Health (GA4GH). The main goal addressed by version 1 of the Beacon protocol was to test the feasibility of broadly sharing human genomic data, through providing simple "yes" or "no" responses to queries about the presence of a given variant in datasets hosted by Beacon providers. The popularity of this concept has fostered the design of a version 2, that better serves real-world requirements and addresses the needs of clinical genomics research and healthcare, as assessed by several contributing projects and organizations. Particularly, rare disease genetics and cancer research will benefit from new case level and genomic variant level requests and the enabling of richer phenotype and clinical queries as well as support for fuzzy searches. Beacon is designed as a "lingua franca" to bridge data collections hosted in software solutions with different and rich interfaces. Beacon version 2 works alongside popular standards like Phenopackets, OMOP, or FHIR, allowing implementing consortia to return matches in beacon responses and provide a handover to their preferred data exchange format. The protocol is being explored by other research domains and is being tested in several international projects

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Ontologiaperusteisten tapahtumien tunnistus piilevÀn semantiikan analyysillÀ

    Full text link
    Perinteinen tekstihaku vertaa toisiinsa tekstistÀ löytyviÀ merkkijonoja, jolloin esimerkiksi hakusanalla 'Nokia' voidaan tulokseksi saada dokumentteja matkapuhelinvalmistajasta, Nokian kaupungista tai F.E SillanpÀÀn Ihmiset suviyössÀ teoksen pÀÀhenkilöstÀ. TÀssÀ tutkielmassa esitetÀÀn informaation haussa (engl. Information Retrieval, IR) kÀytettÀvÀ menetelmÀ, jolla on mahdollista hakea tekstidokumentteja tarkasti mÀÀritellyllÀ kÀsitteellÀ. Tarkasti mÀÀritellyllÀ kÀsitteellÀ tarkoitetaan ontologiassa, koneymmÀrrettÀvÀssÀ sanastossa, mÀÀriteltyÀ kÀsitettÀ. TÀssÀ tutkielmassa keskitytÀÀn erityisesti historiaontologiassa mÀÀriteltyihin tapahtumiin. Tutkielmassa esitetty menetelmÀ pyrkii tunnistamaan dokumentissa esiintyvÀt kÀsitteet sanoja ympÀröivÀn semantiikan perusteella. TÀsmÀllisesti sanaa ympÀröivÀ semantiikka saadaan niin kutsutusta semanttisesta avaruudesta, joka muodostetaan piilevÀn semantiikan analyysiksi (engl. Latent Semantic Analysis, LSA) kutsutulla matemaattisella menetelmÀllÀ, ja ympÀröivÀÀ semantiikkaa sovelletaan ontologiseen kyselyn laajentamiseen. Mallin toimivuutta pyrittiin arvioimaan koejÀrjestelyllÀ, jossa aineistona kÀytetÀÀn Suomalaista historiaontologiaa ja suomenkielisen Wikipedia-tietosanakirjan artikkeleita. KoejÀrjestelyssÀ ilmenneiden vaikeuksien vuoksi toimivuuden arviointi jÀi puutteelliseksi. Tutkielman lopussa on pohdittu menetelmÀn merkitystÀ informaation haussa yleisesti, sillÀ tutkielmassa kuvattu menetelmÀ ontologiassa mÀÀriteltyjen kÀsitteiden kuvaamisesta tekstidokumenttien mÀÀrÀÀmÀÀn semanttiseen avaruuteen on uusi, eikÀ aiempaa tutkimusta menetelmÀn toiminnasta tai kehittÀmisestÀ ole tehty

    Modular Pre-Ingest Tool for Diverse Needs of Producers

    Full text link
    We introduce an open-source pre-ingest tool that assists the generation of Submission Information Packages (SIPs) that are to be submitted to the national digital preservation service in Finland. The pre-ingest tool consists of several independent components that produce the parts of a METS document required by the national preservation service. These components are easy to modify when developing services for different user demands or for different repositories. Users of the tool provide the necessary information as parameters for the tool, which produces the structure and descriptions for the SIP. The pre-ingest tool reduces the need to deeply understand either METS, PREMIS or other metadata formats to be able to preserve digital assets

    IOS Press World War 1 as Linked Open Data

    Full text link
    Abstract. The WW1LOD dataset is primarily a reference dataset meant to bind together collections dealing with the First World War. For this purpose, the dataset gathers events, places and agents related to the war from various authoritative sources. These are then made available for indexing and other use through a variety of interfaces and APIs. Additional information on the entities is also collected, in order to be able to answer more complex questions relating to them. The approach is being evaluated using a concrete WW1 online collection
    corecore