18 research outputs found
Counterions and the bacteriorhodopsin proton pump
AbstractTheoretical and new experimental arguments are given to explain the reversal of photoelectric signals from purple membranes oriented and immobilized in gel due to the presence of TEMED. The continuous current induced by continuous illumination demonstrates a photoelement-like behaviour, the polarity of which is reversed by TEMED. The data render the counterion-collapse mechanism highly questionable
Actinic Light-Energy Dependence of Proton Release from Bacteriorhodopsin
Measuring the light-density (fluence) dependence of proton release from flash excited bacteriorhodopsin with two independent methods we found that the lifetime of proton release increases and the proton pumping activity, defined as a number of protons per number of photocycle, decreases with increasing fluence. An interpretation of these results, based on bending of purple membrane and electrical interaction among the proton release groups of bacteriorhodopsin trimer, is presented
Buffer effects on electric signals of light-excited bacteriorhodopsin.
Buffers change the electric signals of light-excited bacteriorhodopsin molecules in purple membrane if their concentration and the pH of the low-salt solution are properly selected. "Positive" buffers produce a positive component, and "negative" buffers a negative component in addition to the signals due to proton pumping. Measurement of the buffer effects in the presence of glycyl-glycine or bis-tris propane revealed an increase of approximately 2 and a change of sign and a decrease to approximately -0.5 in the translocated charge in these cases, respectively. These factors do not depend on temperature. The Arrhenius parameters established from the evaluation of the kinetics indicate activation enthalpies of 35-40 kJ/mol and negative activation entropies for the additional signals. These values agree with those found by surface-bound pH-sensitive probes in the search of the timing of proton release and uptake. The electric signals were also measured in the case of D(2)O solutions with similar results, except for the increased lifetimes. We offer a unified explanation for the data obtained with surface-bound probes and electric signals based on the clusters at extracellular and cytoplasmic sites of bacteriorhodopsin participating in proton release and uptake
Photoexcitation of the O-Intermediate in Bacteriorhodopsin Mutant L93A
During the extended lifetime of the O-state in bacteriorhodopsin (bR) mutant L93A, two substates have been distinguished. The first O-intermediate (OI) is in rapid equilibrium with N and apparently still has a 13-cis chromophore. OI undergoes a photoreaction with a small absorbance change, positive charge transport in the pumping direction, and proton release and uptake. None of these effects was detected after photoexcitation of the late O (OII). The most likely interpretation of the effects seen is an accelerated return of the molecule from the OI- to the bR-state. However, with a lifetime ≈140 ms, the reaction cannot account for the observed high pumping efficiency of the mutant under continuous illumination. We suggest that OII corresponds to the O-intermediate with a twisted all-trans chromophore seen in the photocycle of wild-type bR, where the 13-cis OI-intermediate under the usual conditions does not accumulate in easily detectable amounts and, therefore, has generally been overlooked. Both the OI- and OII-decays are apparently strongly inhibited in the mutant
Non-proton ion release in purple membrane.
Large conductivity changes have been measured during the photocycle of bacteriorhodopsin in purple membrane. These phenomena were explained as being due to the occurrence of large-scale non-proton ion release. Here we show that these conductivity changes do not appear if the purple membrane is immobilized. We propose an alternative hypothesis that explains the presence of conductivity change in suspensions and their absence in gels, as well as several related effects suggesting that the observed conductivity changes are due to alteration of the polarizability of purple membrane during the photocycle
Angle of the retinal of bacteriorhodopsin in blue membrane
The electric dichroism of purple and cation-depleted (blue) membrane was measured in a.c. electric fields at saturation. A decrease of 5.5° in the direction of the chromophore transition moment with respect to the membrane normal was found upon removal of cations from purple membrane
Excitation of the L Intermediate of Bacteriorhodopsin: Electric Responses to Test X-Ray Structures
The L intermediate of bacteriorhodopsin was excited, and its electrical response was measured. Two positive components were found in it with respect to the direction of proton pumping: an unresolved fast component, and a slower one (τ = 7 μs) of small amplitude. The fast component was assigned to a charge motion corresponding to reisomerization of the retinal moiety, whereas the slow one was attributed to charge rearrangements reestablishing the ground state. Because three x-ray crystallographic structures have recently been reported for the L intermediate, it seemed important to calculate the intramolecular dipole moment changes associated to bR→L for all three structures, so as to compare them with similar quantities determined from the electrical signals. The results are discussed in terms of amino acid side chains possibly contributing to the observed effect. We propose to use electrical signals as a verification tool for intermediate structures of the photocycle, and thus for molecular models of proton pumping