250 research outputs found
Critical behavior of the two dimensional 2A->3A, 4A->0 binary system
The phase transitions of the recently introduced 2A -> 3A, 4A -> 0
reaction-diffusion model (G.Odor, PRE 69 036112 (2004)) are explored in two
dimensions. This model exhibits site occupation restriction and explicit
diffusion of isolated particles. A reentrant phase diagram in the diffusion -
creation rate space is confirmed in agreement with cluster mean-field and
one-dimensional results. For strong diffusion a mean-field transition can be
observed at zero branching rate characterized by density decay
exponent. In contrast with this for weak diffusion the effective 2A ->3A->4A->0
reaction becomes relevant and the mean-field transition of the 2A -> 3A, 2A ->
0 model characterized by also appears for non-zero branching
rates.Comment: 5 pages, 5 figures included, small correction
Slow relaxation and aging kinetics for the driven lattice gas
We numerically investigate the long-time behavior of the density-density
auto-correlation function in driven lattice gases with particle exclusion and
periodic boundary conditions in one, two, and three dimensions using precise
Monte Carlo simulations. In the one-dimensional asymmetric exclusion process on
a ring with half the lattice sites occupied, we find that correlations induce
extremely slow relaxation to the asymptotic power law decay. We compare the
crossover functions obtained from our simulations with various analytic results
in the literature, and analyze the characteristic oscillations that occur in
finite systems away from half-filling. As expected, in three dimensions
correlations are weak and consequently the mean-field description is adequate.
We also investigate the relaxation towards the nonequilibrium steady state in
the two-time density-density auto-correlations, starting from strongly
correlated initial conditions. We obtain simple aging scaling behavior in one,
two, and three dimensions, with the expected power laws.Comment: 12 pages, 18 figures; to appear in Phys. Rev. E (2011
Nonequilibrium critical dynamics of the relaxational models C and D
We investigate the critical dynamics of the -component relaxational models
C and D which incorporate the coupling of a nonconserved and conserved order
parameter S, respectively, to the conserved energy density rho, under
nonequilibrium conditions by means of the dynamical renormalization group.
Detailed balance violations can be implemented isotropically by allowing for
different effective temperatures for the heat baths coupling to the slow modes.
In the case of model D with conserved order parameter, the energy density
fluctuations can be integrated out. For model C with scalar order parameter, in
equilibrium governed by strong dynamic scaling (z_S = z_rho), we find no
genuine nonequilibrium fixed point. The nonequilibrium critical dynamics of
model C with n = 1 thus follows the behavior of other systems with nonconserved
order parameter wherein detailed balance becomes effectively restored at the
phase transition. For n >= 4, the energy density decouples from the order
parameter. However, for n = 2 and n = 3, in the weak dynamic scaling regime
(z_S <= z_rho) entire lines of genuine nonequilibrium model C fixed points
emerge to one-loop order, which are characterized by continuously varying
critical exponents. Similarly, the nonequilibrium model C with spatially
anisotropic noise and n < 4 allows for continuously varying exponents, yet with
strong dynamic scaling. Subjecting model D to anisotropic nonequilibrium
perturbations leads to genuinely different critical behavior with softening
only in subsectors of momentum space and correspondingly anisotropic scaling
exponents. Similar to the two-temperature model B the effective theory at
criticality can be cast into an equilibrium model D dynamics, albeit
incorporating long-range interactions of the uniaxial dipolar type.Comment: Revtex, 23 pages, 5 eps figures included (minor additions), to appear
in Phys. Rev.
Localized Flux Lines and the Bose Glass
Columnar defects provide effective pinning centers for magnetic flux lines in
high-- superconductors. Utilizing a mapping of the statistical
mechanics of directed lines to the quantum mechanics of two--dimensional
bosons, one expects an entangled flux liquid phase at high temperatures,
separated by a second--order localization transition from a low--temperature
``Bose glass'' phase with infinite tilt modulus. Recent decoration experiments
have demonstrated that below the matching field the repulsive forces between
the vortices may be sufficiently large to produce strong spatial correlations
in the Bose glass. This is confirmed by numerical simulations, and a remarkably
wide soft ``Coulomb gap'' at the chemical potential is found in the
distribution of pinning energies. At low currents, the dominant transport
mechanism in the Bose glass phase proceeds via the formation of double kinks
between not necessarily adjacent columnar pins, similar to variable--range
hopping in disordered semiconductors. The strong correlation effects
originating in the long--range vortex interactions drastically reduce
variable--range hopping transport.Comment: 10 pages, latex ("lamuphys.sty" file included), 6 figures can be
obtained from the author ([email protected]); to appear in Proc. XIV
Sitges conference on "Complex Behaviour of Glassy Systems" (Springer--Verlag
Outbreak among drug users caused by a clonal strain of group A streptococcus.
We describe an outbreak among drug users of severe soft-tissue infections caused by a clonal strain of group A streptococcus of M-type 25. Cases (n = 19) in drug users were defined as infections (mainly needle abscesses) due to the outbreak strain. Comparison with controls showed that infected drug users bought drugs more often at a specific place. Drug purchase and use habits may have contributed to this outbreak
Two Langevin equations in the Doi-Peliti formalism
A system-size expansion method is incorporated into the Doi-Peliti formalism
for stochastic chemical kinetics. The basic idea of the incorporation is to
introduce a new decomposition of unity associated with a so-called Cole-Hopf
transformation. This approach elucidates a relationship between two different
Langevin equations; one is associated with a coherent-state path-integral
expression and the other describes density fluctuations. A simple reaction
scheme is investigated as an illustrative example.Comment: 14page
Nonequilibrium relaxation and scaling properties of the two-dimensional Coulomb glass in the aging regime
We employ Monte Carlo simulations to investigate the two-time density
autocorrelation function for the two-dimensional Coulomb glass. We find that
the nonequilibrium relaxation properties of this highly correlated disordered
system can be described by a full aging scaling ansatz. The scaling exponents
are non-universal, and depend on temperature and charge density.Comment: 6 pages, 3 figures included; revised version: corrected exponents,
and some additional explanations and references added; to appear in EP
The Free Radical Scavenger α-Phenyl-Tert-Butyl Nitrone Aggravates Hippocampal Apoptosis and Learning Deficits in Experimental Pneumococcal Meningitis
The effect of adjuvant therapy with the radical scavenger α-phenyl-tert-butyl nitrone (PBN; 100 mg/kg given intraperitoneally every 8 h for 5 days) on brain injury and learning function was evaluated in an infant rat model of pneumococcal meningitis. Meningitis led to cortical necrotic injury (median, 3.97% [range, 0%-38.9%] of the cortex), which was reduced to a median of 0% (range, 0%-30.9%) of the cortex (P < .001) by PBN. However, neuronal apoptosis in the hippocampal dentate gyrus was increased by PBN, compared with that by saline (median score, 1.15 [range, 0.04-1.73] vs. 0.31 [range, 0-0.92]; P < .001). Learning function 3 weeks after cured infection, as assessed by the Morris water maze, was decreased, compared with that in uninfected control animals (P < .001). Parallel to the increase in hippocampal apoptosis, PBN further impaired learning in infected animals, compared with that in saline-treated animals (P < .02). These results contrast with those of an earlier study, in which PBN reduced cortical and hippocampal neuronal injury in group B streptococcal meningitis. Thus, in pneumococcal meningitis, antioxidant therapy with PBN aggravates hippocampal injury and learning deficit
Properties of the Bose glass phase in irradiated superconductors near the matching field
Structural and transport properties of interacting localized flux lines in
the Bose glass phase of irradiated superconductors are studied by means of
Monte Carlo simulations near the matching field B_Phi, where the densities of
vortices and columnar defects are equal. For a completely random columnar pin
distribution in the xy-plane transverse to the magnetic field, our results show
that the repulsive vortex interactions destroy the Mott insulator phase which
was predicted to occur at B = B_Phi. On the other hand, for ratios of the
penetration depth to average defect distance lambda/d <= 1, characteristic
remnants of the Mott insulator singularities remain visible in experimentally
accessible quantities as the magnetization, the bulk modulus, and the
magnetization relaxation, when B is varied near B_Phi. For spatially more
regular disorder, e.g., a nearly triangular defect distribution, we find that
the Mott insulator phase can survive up to considerably large interaction range
\lambda/d, and may thus be observable in experiments.Comment: RevTex, 17 pages, eps files for 12 figures include
Vortex Plastic Flow, , Deep in the Bose Glass and Mott-Insulator Regimes
We present simulations of flux-gradient-driven superconducting vortices
interacting with strong columnar pinning defects as an external field is
quasi-statically swept from zero through a matching field . We
analyze several measurable quantities, including the local flux density , magnetization , critical current , and the
individual vortex flow paths. We find a significant change in the behavior of
these quantities as the local flux density crosses , and quantify it
for many microscopic pinning parameters. Further, we find that for a given pin
density can be enhanced by maximizing the distance between the pins
for .Comment: 4 pages, 4 PostScript Figure
- …