383 research outputs found
Invariant measures for monotone SPDE's with multiplicative noise term
We study diffusion processes corresponding to infinite dimensional semilinear
stochastic differential equations with local Lipschitz drift term and an
arbitrary Lipschitz diffusion coefficient. We prove tightness and the Feller
property of the solution to show existence of an invariant measure. As an
application we discuss stochastic reaction diffusion equations.Comment: 10 page
A spatio-temporal entropy-based approach for the analysis of cyber attacks (demo paper)
Computer networks are ubiquitous systems growing exponentially with a predicted 50 billion devices connected by 2050. This dramatically increases the potential attack surface of Internet networks. A key issue in cyber defense is to detect, categorize and identify these attacks, the way they are propagated and their potential impacts on the systems affected. The research presented in this paper models cyber attacks at large by considering the Internet as a complex system in which attacks are propagated over a network. We model an attack as a path from a source to a target, and where each attack is categorized according to its intention. We setup an experimental testbed with the concept of honeypot that evaluates the spatiotemporal distribution of these Internet attacks. The preliminary results show a series of patterns in space and time that illustrate the potential of the approach, and how cyber attacks can be categorized according to the concept and measure of entropy
Fast relaxation in a fragile liquid under pressure
The incoherent dynamic structure factor of ortho-terphenyl has been measured
by neutron time-of-flight and backscattering technique in the pressure range
from 0.1 MPa to 240 MPa for temperatures between 301 K and 335 K.
Tagged-particle correlations in the compressed liquid decay in two steps. The
alpha-relaxation lineshape is independent of pressure, and the relaxation time
proportional to viscosity. A kink in the amplitude f_Q(P) reveals the onset of
beta relaxation. The beta-relaxation regime can be described by the
mode-coupling scaling function; amplitudes and time scales allow a consistent
determination of the critical pressure P_c(T). alpha and beta relaxation depend
in the same way on the thermodynamic state; close to the mode-coupling
cross-over, this dependence can be parametrised by an effective coupling Gamma
~ n*T**{-1/4}.Comment: 4 Pages of RevTeX, 4 figures (submitted to Physical Review Letters
Wavenumber dependence of structural alpha relaxation in a molecular liquid
Structural alpha relaxation in liquid orthoterphenyl is studied by means of
coherent neutron time-of-flight and backscattering spectroscopy over a large
temperature range. Not only amplitude and relaxation time but also the spectral
line shape show a significant variation with wavenumber. As expected from mode
coupling theory, these variations are correlated with the static structure
factor. Even far above the melting point, alpha relaxation remains
non-exponential.Comment: 6 pages of LaTeX, 4 figure
Effect of entropy on the dynamics of supercooled liquids: New results from high pressure data
We show that for arbitrary thermodynamic conditions, master curves of the
entropy are obtained by expressing S(T,V) as a function of TV^g_G, where T is
temperature, V specific volume, and g_G the thermodynamic Gruneisen parameter.
A similar scaling is known for structural relaxation times,tau = f(TV^g);
however, we find g_G < g. We show herein that this inequality reflects
contributions to S(T,V) from processes, such as vibrations and secondary
relaxations, that do not directly influence the supercooled dynamics. An
approximate method is proposed to remove these contributions, S_0, yielding the
relationship tau = f(S-S_0).Comment: 10 pages 7 figure
On the correlation between fragility and stretching in glassforming liquids
We study the pressure and temperature dependences of the dielectric
relaxation of two molecular glassforming liquids, dibutyl phtalate and
m-toluidine. We focus on two characteristics of the slowing down of relaxation,
the fragility associated with the temperature dependence and the stretching
characterizing the relaxation function. We combine our data with data from the
literature to revisit the proposed correlation between these two quantities. We
do this in light of constraints that we suggest to put on the search for
empirical correlations among properties of glassformers. In particular, argue
that a meaningful correlation is to be looked for between stretching and
isochoric fragility, as both seem to be constant under isochronic conditions
and thereby reflect the intrinsic effect of temperature
Flow equations for cold Bose gases
Wederive flow equations for cold atomic gases with one macroscopically populated energy level. The
generator is chosen such that the ground state decouples from all other states in the system as the
renormalization group flow progresses.Wepropose a self-consistent truncation scheme for the flow
equations at the level of three-body operators and show how they can be used to calculate the ground
state energy of a generalN-body system. Moreover, we provide a general method to estimate the
truncation error in the calculated energies. Finally, we test our scheme by benchmarking to the exactly
solvable Lieb–Liniger model and find good agreement for weak and moderate interaction strengths
Atomic Transport in Dense, Multi-Component Metallic Liquids
Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with
incoherent, inelastic neutron scattering. As compared to simple liquids, liquid
PdNiCuP is characterized by a dense packing with a packing fraction above 0.5.
The intermediate scattering function exhibits a fast relaxation process that
precedes structural relaxation. Structural relaxation obeys a time-temperature
superposition that extends over a temperature range of 540K. The mode-coupling
theory of the liquid to glass transition (MCT) gives a consistent description
of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT
scaling laws extrapolate to a critical temperature Tc at about 20% below the
liquidus temperature. Diffusivities derived from the mean relaxation times
compare well with Co diffusivities from recent tracer diffusion measurements
and diffsuivities calculated from viscosity via the Stokes-Einstein relation.
In contrast to simple metallic liquids, the atomic transport in dense, liquid
PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a
q^{-2} dependence of the mean relaxation times at intermediate q and a
vanishing isotope effect as a result of a highly collective transport
mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as
fast as in simple liquids at the melting point. However, the difference in the
underlying atomic transport mechanism indicates that the diffusion mechanism in
liquids is not controlled by the value of the diffusivity but rather by that of
the packing fraction
Molecular dynamics simulation of the fragile glass former ortho-terphenyl: a flexible molecule model
We present a realistic model of the fragile glass former orthoterphenyl and
the results of extensive molecular dynamics simulations in which we
investigated its basic static and dynamic properties. In this model the
internal molecular interactions between the three rigid phenyl rings are
described by a set of force constants, including harmonic and anharmonic terms;
the interactions among different molecules are described by Lennard-Jones
site-site potentials. Self-diffusion properties are discussed in detail
together with the temperature and momentum dependencies of the
self-intermediate scattering function. The simulation data are compared with
existing experimental results and with the main predictions of the Mode
Coupling Theory.Comment: 20 pages and 28 postscript figure
- …