23,186 research outputs found

    Numerical study of a multiscale expansion of KdV and Camassa-Holm equation

    Full text link
    We study numerically solutions to the Korteweg-de Vries and Camassa-Holm equation close to the breakup of the corresponding solution to the dispersionless equation. The solutions are compared with the properly rescaled numerical solution to a fourth order ordinary differential equation, the second member of the Painlev\'e I hierarchy. It is shown that this solution gives a valid asymptotic description of the solutions close to breakup. We present a detailed analysis of the situation and compare the Korteweg-de Vries solution quantitatively with asymptotic solutions obtained via the solution of the Hopf and the Whitham equations. We give a qualitative analysis for the Camassa-Holm equationComment: 17 pages, 13 figure

    Multipeakons and a theorem of Stieltjes

    Full text link
    A closed form of the multi-peakon solutions of the Camassa-Holm equation is found using a theorem of Stieltjes on continued fractions. An explicit formula is obtained for the scattering shifts.Comment: 6 page

    Impact of corrosion on fretting damage of electrical contacts

    Get PDF
    Electrical contacts are used in a large number of industrial applications, this includes all sorts of modern transportation: airplanes, trains and automobiles. Mechanical assemblies are subjected to vibrations and micro-displacements between mating surfaces are observed leading to fretting wear. Mechanical degradation can additionally be accelerated by a corrosive factor caused by variable humidity, temperature and corrosive gas attack. Fretting-corrosion leads to an increase of contact resistance or intermittent contact resistance faults as corrosion products change the nature of the interface primary through a range of film formation processes. In this work the impact of a corrosion product film formed on copper and gold surfaces on the electrical contact fretting behavior is shown. It has been observed that modification of the interface by the formation of the surface layer can surprisingly lead to increase of the electrical contact durability

    Decoupled and unidirectional asymptotic models for the propagation of internal waves

    Full text link
    We study the relevance of various scalar equations, such as inviscid Burgers', Korteweg-de Vries (KdV), extended KdV, and higher order equations (of Camassa-Holm type), as asymptotic models for the propagation of internal waves in a two-fluid system. These scalar evolution equations may be justified with two approaches. The first method consists in approximating the flow with two decoupled, counterpropagating waves, each one satisfying such an equation. One also recovers homologous equations when focusing on a given direction of propagation, and seeking unidirectional approximate solutions. This second justification is more restrictive as for the admissible initial data, but yields greater accuracy. Additionally, we present several new coupled asymptotic models: a Green-Naghdi type model, its simplified version in the so-called Camassa-Holm regime, and a weakly decoupled model. All of the models are rigorously justified in the sense of consistency

    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations

    Get PDF
    In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral. To justify the Camassa-Holm approximation we show that approximation errors remain small over a long time interval. To be more precise, we obtain error estimates in terms of two independent, small, positive parameters ϵ\epsilon and δ\delta measuring the effect of nonlinearity and dispersion, respectively. We further show that similar conclusions are also valid for the lower order approximations: the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.Comment: 24 pages, to appear in Discrete and Continuous Dynamical System

    A Letter from the Speaker & Gavel Editor - Big Change, Little Change

    Get PDF
    A letter from Speaker & Gavel editor Todd Holm about the future of Speaker & Gavel

    Editor\u27s Note

    Get PDF
    Editor\u27s note by Todd Holm from volume 52, issue 2 of Speaker & Gavel

    A Note from the Editor

    Get PDF
    A note from the editor of Speaker & Gavel, Todd Holm for volume 58, issue 1, 2022

    Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations

    Full text link
    In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa-Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon and cuspon solutions. One of the considered GCH equations supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. The second equation does not support singular traveling waves and the last one supports four-segmented, non-smooth MM-wave solutions. Moreover, smooth traveling waves of the three GCH equations are considered. Here, we use a recent technique to derive convergent multi-infinite series solutions for the homoclinic orbits of their traveling-wave equations, corresponding to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding GCH equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. We also show the traveling wave nature of these pulse and front solutions to the GCH NLPDEs

    Nonlinear Stability in Fluids and Plasmas

    Get PDF
    N/
    corecore