2 research outputs found

    Novel bimetallic 1%M-Fe/Al2O3-Cr2O3 (2:1) (M = Ru, Au, Pt, Pd) catalysts for Fischer-Tropsch synthesis

    Get PDF
    The main objective of this work was to study the physicochemical and catalytic properties of bimetallic supported catalysts [1%M-Fe/Al2O3-Cr2O3 (2:1) (M = Ru, Au, Pt, Pd)] in Fischer-Tropsch synthesis. Furthermore, the study investigated the effect of noble metal addition to iron-supported catalysts on their physicochemical properties and reactivity. The physicochemical properties of the catalysts were studied using a range of characterization techniques such as X-ray diffraction (XRD), temperature-programmed reduction (TPR-H2), temperature-programmed desorption of ammonia (TPD-NH3) and BET (Brunauer – Emmett - Teller method). The activity tests were performed by Fischer-Tropsch synthesis in a high-pressure fixed-bed reactor using a gas mixture of H2 and CO with a molar ratio of 1:1. The correlation between the physicochemical properties of the investigated catalysts and their catalytic performance in CO hydrogenation was also investigated. The reactivity results showed that the most active system exhibited a high specific surface area, the highest total acidity and was the most reducible catalyst compared to the other catalysts tested. In addition, the Au–Fe system showed high selectivity towards liquid product formation during CO hydrogenation

    The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil

    No full text
    This work presents the comparative physicochemical and catalytic studies of metal oxide MgO catalysts in a transesterification reaction. The influence of the Si/Al ratio in the catalytic material on their catalytic properties in the studied process was extensively evaluated. In addition, the effect of the type of zeolite ZSM-5 form on the catalytic reactivity of MgO based catalysts was investigated. In order to achieve the main goals of this work, a series of MgO/ZSM-5 catalysts were prepared via the impregnation method. Their physicochemical properties were studied using X-ray diffraction (XRD), BET, FTIR and TPD-CO2 methods. The highest activity in the studied process exhibited MgO catalyst supported on ZSM-5 characterized by the highest ratio between silica and alumina. The most active catalyst system in the transesterification reaction was 10% MgO/ZSM-5 (Si/Al = 280), which showed the highest value of higher fatty acid methyl esters (94.6%) and high yield of triglyceride conversion (92.9%). The high activity of this system is explained by the alkalinity, sorption properties in relation to methanol and its high specific surface area compared to the rest of the investigated MgO based catalysts
    corecore