2,821 research outputs found

    Design and Fabrication of Three-Dimensional Scaffolds for Tissue Engineering of Human Heart Valves

    Get PDF
    We developed a new fabrication technique for 3-dimensional scaffolds for tissue engineering of human heart valve tissue. A human aortic homograft was scanned with an X-ray computer tomograph. The data derived from the X-ray computed tomogram were processed by a computer-aided design program to reconstruct a human heart valve 3-dimensionally. Based on this stereolithographic model, a silicone valve model resembling a human aortic valve was generated. By taking advantage of the thermoplastic properties of polyglycolic acid as scaffold material, we molded a 3-dimensional scaffold for tissue engineering of human heart valves. The valve scaffold showed a deviation of only +/- 3-4% in height, length and inner diameter compared with the homograft. The newly developed technique allows fabricating custom-made, patient-specific polymeric cardiovascular scaffolds for tissue engineering without requiring any suture materials. Copyright (c) 2008 S. Karger AG, Base

    A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph

    Get PDF
    We have observed an evolved star with a rare combination of spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust continuum dominates the spectrum of MSX SMC 029. The spectrum also shows both emission from polycyclic aromatic hydrocarbons (PAHs) and absorption at 13.7 micron from C2H2, a juxtaposition seen in only two other sources, AFGL 2688 and IRAS 13416-6243, both post-asymptotic giant branch (AGB) objects. As in these sources, the PAH spectrum has the unusual trait that the peak emission in the 7-9 micron complex lies beyond 8.0 micron. In addition, the 8.6 micron feature has an intensity as strong as the C-C modes which normally peak between 7.7 and 7.9 micron. The relative flux of the feature at 11.3 micron to that at 8 micron suggests that the PAHs in MSX SMC 029 either have a low ionization fraction or are largely unprocessed. The 13-16 micron wavelength region shows strong absorption features similar to those observed in the post-AGB objects AFGL 618 and SMP LMC 11. This broad absorption may arise from the same molecules which have been identified in those sources: C2H2, C4H2, HC3N, and C6H6. The similarities between MSX SMC 029, AFGL 2688, and AFGL 618 lead us to conclude that MSX SMC 029 has evolved off the AGB in only the past few hundred years, making it the third post-AGB object identified in the SMC.Comment: 4 figures, Fig. 4 color; to appear in the 20 November 2006 Astrophysical Journal Letter

    A light-responsive liposomal agent for MRI contrast enhancement and monitoring of cargo delivery

    Get PDF
    Medical magnetic resonance imaging (MRI) produces high-resolution anatomical images of the human body, but has limited capacity to provide useful molecular information. The light-responsive, liposomal MRI contrast agent described herein could be used to provide an intrinsic theranostic aspect to MRI and enable tracking the distribution and cargo release of drug delivery systems upon light-triggered activation

    Observation of a large parity nonconserving analyzing power in Xe

    Full text link
    A large parity nonconserving longitudinal analyzing power was discovered in polarized-neutron transmission through Xe. An analyzing power of 4.3±0.2% was observed in a p-wave resonance at En=3.2 eV. The measurement was performed with a liquid Xe target of natural isotopic abundance that was placed in the polarized epithermal neutron beam, flight path 2, at the Manuel Lujan Neutron Science Center. This apparatus was constructed by the TRIPLE Collaboration, and has been used for studies of parity symmetry in compound nuclear resonances. Part of the motivation of the experiment was to discover a nucleus appropriate for a sensitive test of time-reversal invariance in polarized-neutron transmission. The large analyzing power of the observed resonance may make it possible to design a test of time reversal invariance using a polarized-Xe target

    Relativistic Treatment of Hypernuclear Decay

    Get PDF
    We compute for the first time the decay width of lambda-hypernuclei in a relativistic mean-field approximation to the Walecka model. Due to the small mass difference between the lambda-hyperon and its decay products---a nucleon and a pion---the mesonic component of the decay is strongly Pauli blocked in the nuclear medium. Thus, the in-medium decay becomes dominated by the non-mesonic, or two-body, component of the decay. For this mode, the lambda-hyperon decays into a nucleon and a spacelike nuclear excitation. In this work we concentrate exclusively on the pion-like modes. By relying on the analytic structure of the nucleon and pion propagators, we express the non-mesonic component of the decay in terms of the spin-longitudinal response function. This response has been constrained from precise quasielastic (p,n) measurements done at LAMPF. We compute the spin-longitudinal response in a relativistic random-phase-approximation model that reproduces accurately the quasielastic data. By doing so, we obtain hypernuclear decay widths that are considerably smaller---by factors of two or three---relative to existing nonrelativistic calculations.Comment: Revtex: 18 pages and 4 postscript figure
    • …
    corecore