9 research outputs found

    H2A.Z Functions To Regulate Progression through the Cell Cycle

    Full text link
    Histone H2A variants are highly conserved proteins found ubiquitously in nature and thought to perform specialized functions in the cell. Studies in yeast on the histone H2A variant H2A.Z have shown a role for this protein in transcription as well as chromosome segregation. Our studies have focused on understanding the role of H2A.Z during cell cycle progression. We found that htz1Δ cells were delayed in DNA replication and progression through the cell cycle. Furthermore, cells lacking H2A.Z required the S-phase checkpoint pathway for survival. We also found that H2A.Z localized to the promoters of cyclin genes, and cells lacking H2A.Z were delayed in the induction of these cyclin genes. Several different models are proposed to explain these observations

    Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae

    Get PDF
    Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2–Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Δ cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair

    Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production

    Full text link
    Genetically engineered (GE) algae offer the promise of producing food, fuel, and other valuable products with reduced requirements for land and fresh water. While the gains in productivity measured in GE terrestrial crops are predicted to be mirrored in GE algae, the stability of phenotypes and ecological risks posed by GE algae in large-scale outdoor cultivation remain unknown. Here, we describe the first US Environmental Protection Agency (EPA)-sanctioned experiment aimed at understanding how GE algae perform in outdoor cultivation. Acutodesmus dimorphus was genetically engineered by the addition of two genes, one for enhanced fatty acid biosynthesis, and one for recombinant green fluorescence protein (GFP) expression; both the genes and their associated phenotypes were maintained during fifty days of outdoor cultivation. We also observed that while the GE algae dispersed from the cultivation ponds, colonization of the trap ponds by the GE strain declined rapidly with increasing distance from the source cultivation ponds. In contrast, many species of indigenous algae were found in every trap pond within a few days of starting the experiment. When inoculated in water from five local lakes, the GE algae's effect on biodiversity, species composition, and biomass of native algae was indiscernible from those of the wild-type (wt) progenitor algae, and neither the GE nor wt algae were able to outcompete native strains. We conclude that GE algae can be successfully cultivated outdoors while maintaining GE traits, and that for the specific GE algal strain tested here they did not outcompete or adversely impact native algae populations when grown in water taken from local lakes. This study provides an initial evaluation of GE algae in outdoor cultivation and a framework to evaluate GE algae risks associated with outdoor GE algae production

    DNA polymerase É›, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator

    Full text link
    Insulators bind transcription factors and use chromatin remodellers and modifiers to mediate insulation. In this report, we identified proteins required for the efficient formation and maintenance of a specialized chromatin structure at the yeast tRNA insulator. The histone acetylases, SAS-I and NuA4, functioned in insulation, independently of tRNA and did not participate in the formation of the hypersensitive site at the tRNA. In contrast, DNA polymerase É›, functioned with the chromatin remodeller, Rsc, and the histone acetylase, Rtt109, to generate a histone-depleted region at the tRNA insulator. Rsc and Rtt109 were required for efficient binding of TFIIIB to the tRNA insulator, and the bound transcription factor and Rtt109 in turn were required for the binding of Rsc to tRNA. Robust insulation during growth and cell division involves the formation of a hypersensitive site at the insulator during chromatin maturation together with competition between acetylases and deacetylases
    corecore