16 research outputs found

    Ab initio prediction of Boron compounds arising from Borozene: Structural and electronic properties

    Get PDF
    Structure and electronic properties of two unusual boron clusters obtained by fusion of borozene rings has been studied by means of first principles calculations, based on the generalized-gradient approximation of the density functional theory, and the semiempirical tight-binding method was used for the transport calculations. The role of disorder has also been considered with single vacancies and substitutional atoms. Results show that the pure boron clusters are topologically planar and characterized by (3c-2e) bonds, which can explain, together with the aromaticity (estimated by means of NICS), the remarkable cohesive energy values obtained. Such feature makes these systems competitive with the most stable boron clusters to date. On the contrary, the introduction of impurities compromises stability and planarity in both cases. The energy gap values indicate that these clusters possess a semiconducting character, while when the larger system is considered, zero-values of the density of states are found exclusively within the HOMO-LUMO gap. Electron transport calculations within the Landauer formalism confirm these indications, showing semiconductor-like low bias differential conductance for these stuctures. Differences and similarities with Carbon clusters are highlighted in the discussion.Comment: 10 pages, 2 tables, 5 figure

    Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters

    Get PDF
    The equilibrium structures and dynamics of a nanoscale system are regulated by a complex potential energy surface (PES). This is a key target of theoretical calculations but experimentally elusive. We report the measurement of a key PES parameter for a model nanosystem: size-selected Au nanoclusters, soft-landed on amorphous silicon nitride supports. We obtain the energy difference between the most abundant structural isomers of magic number Au561 clusters, the decahedron and face-centred-cubic (fcc) structures, from the equilibrium proportions of the isomers. These are measured by atomic-resolution scanning transmission electron microscopy, with an ultra-stable heating stage, as a function of temperature (125–500 °C). At lower temperatures (20–125 °C) the behaviour is kinetic, exhibiting down conversion of metastable decahedra into fcc structures; the higher state is repopulated at higher temperatures in equilibrium. We find the decahedron is 0.040 ± 0.020 eV higher in energy than the fcc isomer, providing a benchmark for the theoretical treatment of nanoparticles
    corecore