9 research outputs found

    Effectiveness of an intervention at construction worksites on work engagement, social support, physical workload, and need for recovery: results from a cluster randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To prolong sustainable healthy working lives of construction workers, a worksite prevention program was developed which aimed to improve the health and work ability of construction workers. The aim of the current study was to investigate the effectiveness of this program on social support at work, work engagement, physical workload and need for recovery.</p> <p>Methods</p> <p>Fifteen departments from six construction companies participated in this cluster randomized controlled trial; 8 departments (n=171 workers) were randomized to an intervention group and 7 departments (n=122 workers) to a control group. The intervention consisted of two individual training sessions of a physical therapist to lower the physical workload, a Rest-Break tool to improve the balance between work and recovery, and two empowerment training sessions to increase the influence of the construction workers at the worksite. Data on work engagement, social support at work, physical workload, and need for recovery were collected at baseline, and at three, six and 12 months after the start of the intervention using questionnaires.</p> <p>Results</p> <p>No differences between the intervention and control group were found for work engagement, social support at work, and need for recovery. At 6 months follow-up, the control group reported a small but statistically significant reduction of physical workload.</p> <p>Conclusion</p> <p>The intervention neither improved social support nor work engagement, nor was it effective in reducing the physical workload and need for recovery among construction workers.</p> <p>Trial registration</p> <p>NTR1278</p

    The contribution from psychological, social, and organizational work factors to risk of disability retirement: a systematic review with meta-analyses

    Full text link

    Genome analysis and CRISPR typing of Salmonella enterica serovar Virchow

    Full text link
    Background: Salmonella enterica subsp. enterica serovar Virchow has been recognized as a significant health burden in Asia, Australia and Europe. In addition to its global distribution, S. Virchow is clinically significant due to the frequency at which it causes invasive infections and its association with outbreaks arising from food-borne transmission. Here, we examine the genome of an invasive isolate of S. Virchow SVQ1 (phage type 8) from an outbreak in southeast Queensland, Australia. In addition to identifying new potential genotyping targets that could be used for discriminating between S. Virchow strains in outbreak scenarios, we also aimed to carry out a comprehensive comparative analysis of the S. Virchow genomes.Results: Genome comparisons between S. Virchow SVQ1 and S. Virchow SL491, a previously published strain, identified a high degree of genomic similarity between the two strains with fewer than 200 single nucleotide differences. Clustered Regularly Interspaced Palindromic Repeats (CRISPR) regions were identified as a highly variable region that could be used to discriminate between S. Virchow isolates. We amplified and sequenced the CRISPR regions of fifteen S. Virchow isolates collected from seven different outbreaks across Australia. We observed three allelic types of the CRISPR region from these isolates based on the presence/absence of the spacers and were able to discriminate S. Virchow phage type 8 isolates originating from different outbreaks. A comparison with 27 published Salmonella genomes found that the S. Virchow SVQ1 genome encodes 11 previously described Salmonella Pathogenicity Islands (SPI), as well as additional genomic islands including a remnant integrative conjugative element that is distinct from SPI-7. In addition, the S. Virchow genome possesses a novel prophage that encodes the Type III secretion system effector protein SopE, a key Salmonella virulence factor. The prophage shares very little similarity to the SopE prophages found in other Salmonella serovars suggesting an independent acquisition of sopE.Conclusions: The availability of this genome will serve as a genome template and facilitate further studies on understanding the virulence and global distribution of the S. Virchow serovar, as well as the development of genotyping methods for outbreak investigations. © 2014 Bachmann et al.; licensee BioMed Central Ltd

    Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition

    Full text link
    © 2015, American Society for Microbiology. Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo.We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder

    Composites of Graphene Oxide and Zeolite as a Potential Inhibitor for Alkaline Corrosion of Aluminium

    No full text
    corecore