36 research outputs found

    Signals synchronization in interpolating time counters

    No full text
    W artykule opisano wyniki analizy synchronizacji sygna艂贸w, realizowanej w precyzyjnych licznikach czasu. W szczeg贸lno艣ci analiza dotyczy licznika czasu z interpolacj膮 dwustopniow膮, czterofazowym zegarem o cz臋stotliwo艣ci 250 MHz w pierwszym stopniu interpolacji, zrealizowanego w uk艂adzie programowalnym FPGA. Analizie poddano trzy uk艂ady synchronizacji stosowane w pierwszym stopniu interpolacji dwustopniowych konwerter贸w czasowo-cyfrowych oraz pi臋膰 synchronizator贸w licznika okres贸w. Jako g艂贸wne kryteria oceny uk艂ad贸w u偶yto maksymaln膮 cz臋stotliwo艣膰 dzia艂ania, 艣redni czas mi臋dzy b艂臋dami oraz 艂atwo艣膰 wykonania w uk艂adzie programowalnym.This paper presents the results of an analysis of synchronization issues in precise time counters. Particularly the analysis concerns a time counter with two-stage interpolation, four-phase clock of 250-MHz frequency in the first interpolation stage, implemented in an FPGA device. Three synchronizing circuits used in the first interpolation stage of two-stage time-to-digital converters and five synchronizers of enabling signal for period counter are analyzed. For the evaluation of the circuits quality following criteria were applied: the maximum frequency of operation, the mean time between failure and easiness of implementation in a programmable device

    A Method of Relative Delay Measurement for the Wideband Digital Array Radar Based on Dechirping Technique

    No full text

    A high precision time-to-digital converter based on pulse repetition and time width averaging

    No full text
    This paper describes the design and test results of a time-to-digital converter with 1.9 ps resolution and measurement uncertainty below 12.2 ps (Fig. 4). The time-to-digital conversion is based on time width averaging. Information about the measured time interval is contained in the width of a pulse that circulates in a closed delay loop and its width is measured by the counting method with use of a high frequency multiphase clock (Fig. 1). The converter resolution is directly proportional to the number of cycles of the measured pulse in the delay loop, the number of phases and frequency of a clock used (2). However, increase in the number of loop cycles causes growth in the jitter of circulating pulse edges that finally leads to deterioration in the measurement precision. Therefore, in order to obtain the highest precision of conversion, the number of cycles for which the converter provides the smallest measurement uncertainty was experimentally determined. In addition, to minimize a disadvantageous impact of unequal propagation times of the loop elements for the rising and falling pulse edges on the value of the measured time interval, the information about the measured time interval is contained between the rising edges of the pulse-pair instead of the opposite (rising and falling) edges of a single pulse (Fig. 2). The converter was implemented in a programmable device Spartan-6 manufactured by Xilinx. (Xilinx)

    Direct Digital Synthesizer based on Field Programmable Gate Array

    No full text
    We present the principle (Chapter 2), implementation (Chapter 3) and test results (Chapter 4) of direct digital synthesizer (DDS) that most modules, i.e. phase accumulator, ROM memory and optional amplitude control module are implemented in a digital Field Programmable Gate Array (FPGA) device. To obtain smooth shape of analog output signals the FPGA device is followed by a digital-to-analog converter (DAC) and low-pass filter (LPF). The developed DDS allows for generating signals with frequency up to 50 MHz and amplitude up to 1 Vpp. The frequency adjustment resolution is 1.9 kHz, while the amplitude adjustment step equals 61.04 碌V. The use of programmable device allows for changing the size of tuning words to adapt the DDS parameters to requirements of particular application

    Integrated time-to-digital converter with the use of the counter method and a multiphase clock

    No full text
    W artykule przedstawione s膮 projekt i wyniki bada艅 konwertera czas-liczba o rozdzielczo艣ci 78 ps i niepewno艣ci pomiarowej poni偶ej 100 ps. Pomiar czasu realizowany jest z u偶yciem 32 licznik贸w zliczaj膮cych okresy szesnastofazowego zegara o cz臋stotliwo艣ci 400 MHz. Poniewa偶 aktywne s膮 obydwa zbocza zegara jest on r贸wnowa偶ny pojedynczemu sygna艂owi zegarowemu o cz臋stotliwo艣ci 12.8 GHz, co umo偶liwia osi膮gni臋cie 艣redniej rozdzielczo艣ci ok. 78 ps przy interpolacji jednostopniowej. Budowa opisanego konwertera czasliczba pozwala na 艂atwe rozszerzanie zakresu pomiarowego, wynosz膮cego 164 啪s, poprzez zwi臋kszanie pojemno艣ci u偶ytych licznik贸w dw贸jkowych. Sterowanie procesem pomiarowym oraz wyznaczanie i przetwarzanie wynik贸w pomiar贸w odbywa si臋 z u偶yciem dw贸ch procesor贸w programowych NIOS II zintegrowanych z konwerterem w uk艂adzie programowalnym Stratix II firmy Altera.This paper describes design and test results of the time-to-digital converter with 78 ps resolution and accuracy below 100 ps. The time interval measurement is performed with the use of 32 binary counters counting periods of 16-phase clock of the 400 MHz frequency. Since both edges of the clock are active it is an equivalent of a single clock signal of 12.8 GHz frequency, which provides a mean resolution of about 78 ps in a single interpolation stage. The structure of the converter allows to extend its measurement range (164 啪s) easily by increasing the capacity of used binary counters. The measurement as well as calculation and processing of obtained results are controlled by two soft-core processors NIOS II implemented together with the converter in a single programmable device from family Stratix II (Altera)

    A programmable delay line

    No full text
    The paper describes the design and test results of a programmable digital delay line implemented in an FPGA device (Kintex-7, Xilinx). The operation of the delay line is based on the modified dual interpolation Nutt method that combines two actions, i.e.: (1) counting the periods of a reference clock and (2) time interpolating within a single clock period. The first action provides an extremely wide range of the introduced delays (> 9 minutes), while the second one allows reaching relatively high delay resolution (2 ns) with a timing jitter as low as 35 ps (until delay of 1 渭s). The high metrological parameters of the designed delay line are achieved at the expense of increased difficulty in implementation of the method in an integrated circuit. The major problems to be solved were the synchronizations of input signals as well as synchronous and asynchronous parts of the system, which were effectively provided with the use of two dual-edge synchronizers, a clock signal logic level detection system and associated synchronizers

    A study of the effect of temperature changes on the interpolating time counter

    No full text
    This paper presents an analysis of the impact of ambient temperature changes on main parameters of the interpolating time counter. The performed tests reveal that a relatively small change in the ambient temperature of 1掳C causes a measurement error of the counter as large as 3.5 ps. The thorough research of two stages of interpolation of the counter allowed determining the main sources of the error. One of them is the temperature drift of widths of four-phase clock (FPC) segments in the first interpolation stage (FIS). It equals 2.5 ps/掳C. The widths of FPC phases directly influence the active range of the second interpolation stage (SIS) and its offset. The test results also show that the temperature drift of the offset has a greater impact on the measurement accuracy than the temperature-driven changes of quantization steps in SIS. The presented conclusions are the first step to develop a new method for reducing the impact of changes in the ambient temperature on the measurement accuracy of the interpolating time counter

    A hardware/software development environment for SoC-based time interval counters

    No full text
    The paper describes a design environment for development of precise time counters. The design was implemented in a System-on-Chip Zynq from Xilinx as an embedded solution with a custom user interface. The paper presents the system design, a dedicated time counter interface, and software running on the processing part of the Zynq device. It also contains the results of all system performance tests. The tests reveal the design advantages over the traditional approach, involving an FPGA device connected to a PC that serves as a host with a dedicated user interface. The presented development environment allowed reducing the calibration and measurement times twofold and threefold, respectively. Furthermore, thanks to the bus interface designed for data transmission from the time counter to the control module, the 200 MB/s data throughput inside the SoC was achieved

    A high resolution time-to-digital converter based on pulse sampling

    No full text
    W artykule opisane s膮 projekt i wyniki bada艅 konwertera czasowo-cyfrowego o rozdzielczo艣ci 9 ps i niepewno艣ci pomiarowej nie przekraczaj膮cej 31 ps. Konwerter zosta艂 zrealizowany w uk艂adzie programowalnym Cyclone firmy Altera. Do konwersji czasowo-cyfrowej u偶yto nowatorskiej metody, w kt贸rej informacja o mierzonym odcinku czasu zawarta jest w szeroko艣ci impulsu, propaguj膮cego si臋 wielokrotnie w zamkni臋tej p臋tli op贸藕niaj膮cej i pr贸bkowanego z u偶yciem wielofazowego zegara o wysokiej cz臋stotliwo艣ci. Sterowanie procesem pomiarowym oraz obliczanie i przetwarzanie wynik贸w pomiar贸w odbywa si臋 z wykorzystaniem dedykowanego interfejsu u偶ytkownika opracowanego w j臋zyku C++.W artykule opisane s膮 projekt i wyniki bada艅 konwertera czasowo-cyfrowego o rozdzielczo艣ci 9 ps i niepewno艣ci pomiarowej nie przekraczaj膮cej 31 ps. Konwerter zosta艂 zrealizowany w uk艂adzie programowalnym Cyclone firmy Altera. Do konwersji czasowo-cyfrowej u偶yto nowatorskiej metody, w kt贸rej informacja o mierzonym odcinku czasu zawarta jest w szeroko艣ci impulsu, propaguj膮cego si臋 wielokrotnie w zamkni臋tej p臋tli op贸藕niaj膮cej i pr贸bkowanego z u偶yciem wielofazowego zegara o wysokiej cz臋stotliwo艣ci. Sterowanie procesem pomiarowym oraz obliczanie i przetwarzanie wynik贸w pomiar贸w odbywa si臋 z wykorzystaniem dedykowanego interfejsu u偶ytkownika opracowanego w j臋zyku C++.The paper describes the design and test results of a time-to-digital converter with 9 ps resolution and measurement uncertainty below 31 ps. The converter has been implemented in a programmable device Cyclone manufactured by Altera. The time-to-digital conversion is based on sampling of a periodic square signal. Information about the measured time interval is contained in the width of a pulse that circulates in a closed delay loop and is sampled with the use of a high frequency clock. This method is innovative in the kind of application and it has not been implemented in an integrated circuit so far. In order to achieve both high resolution and high measurement uncertainty the four-phase sampling clock has been used. Such solution allows for fourfold reduction in a number of cycles in the loop and consequently to diminish the measurement error significantly. The four-phase clock has been generated with an embedded PLL functional block. An issue of fundamental importance for the successful implementation of the converter was the use of two short pulses as a representation of the begin and the end of a measured time interval instead of a single long-width pulse. In this way an unpredictable shrinking or stretching of a measured time interval by elements of the delay loop that have different propagation times for rising and falling edges has been avoided. The measurement as well as calculation and processing of obtained results are controlled with the use of dedicated user interface worked out in C++
    corecore