407 research outputs found
A bi-stable optical device
Device was developed which produces short optical pulses of variable lengths with high peak power and without use of external modulators or independent light beams. Optical field intensity is built up inside cavity. At peak of its intensity, light is switched off
SPEDEN: Reconstructing single particles from their diffraction patterns
Speden is a computer program that reconstructs the electron density of single
particles from their x-ray diffraction patterns, using a single-particle
adaptation of the Holographic Method in crystallography. (Szoke, A., Szoke, H.,
and Somoza, J.R., 1997. Acta Cryst. A53, 291-313.) The method, like its parent,
is unique that it does not rely on ``back'' transformation from the diffraction
pattern into real space and on interpolation within measured data. It is
designed to deal successfully with sparse, irregular, incomplete and noisy
data. It is also designed to use prior information for ensuring sensible
results and for reliable convergence. This article describes the theoretical
basis for the reconstruction algorithm, its implementation and quantitative
results of tests on synthetic and experimentally obtained data. The program
could be used for determining the structure of radiation tolerant samples and,
eventually, of large biological molecular structures without the need for
crystallization.Comment: 12 pages, 10 figure
Multistability at arbitrary low optical intensities in a metallo-dielectric layered structure
We show that a nonlinear metallo-dielectric layered slab of subwavelength
thickness and very small average dielectric permittivity displays optical
multistable behavior at arbitrary low optical intensities. This is due to the
fact that, in the presence of the small linear permittivity, one of the
multiple electromagnetic slab states exists no matter how small is the
transmitted optical intensity. We prove that multiple states at ultra-low
optical intensities can be reached only by simultaneously operating on the
incident optical intensity and incidence angle. By performing full wave
simulations, we prove that the predicted phenomenology is feasible and very
robust.Comment: 4 pages, 4 figure
Coherent X-ray Diffractive Imaging; applications and limitations
The inversion of a diffraction pattern offers aberration-free
diffraction-limited 3D images without the resolution and depth-of-field
limitations of lens-based tomographic systems, the only limitation being
radiation damage. We review our experimental results, discuss the fundamental
limits of this technique and future plans.Comment: 7 pages, 8 figure
Recommended from our members
Accurate and efficient radiation transport in optically thick media -- by means of the Symbolic Implicit Monte Carlo method in the difference formulation
The equations of radiation transport for thermal photons are notoriously difficult to solve in thick media without resorting to asymptotic approximations such as the diffusion limit. One source of this difficulty is that in thick, absorbing media thermal emission is almost completely balanced by strong absorption. In a previous publication [SB03], the photon transport equation was written in terms of the deviation of the specific intensity from the local equilibrium field. We called the new form of the equations the difference formulation. The difference formulation is rigorously equivalent to the original transport equation. It is particularly advantageous in thick media, where the radiation field approaches local equilibrium and the deviations from the Planck distribution are small. The difference formulation for photon transport also clarifies the diffusion limit. In this paper, the transport equation is solved by the Symbolic Implicit Monte Carlo (SIMC) method and a comparison is made between the standard formulation and the difference formulation. The SIMC method is easily adapted to the derivative source terms of the difference formulation, and a remarkable reduction in noise is obtained when the difference formulation is applied to problems involving thick media
Recommended from our members
Piecewise linear discretization of Symbolic Implicit Monte Carlo radiation transport in the difference formulation
We describe a Monte Carlo solution for time dependent photon transport, in the difference formulation with the material in local thermodynamic equilibrium (LTE), that is piecewise linear in its treatment of the material state variable. Our method employs a Galerkin solution for the material energy equation while using Symbolic Implicit Monte Carlo (SIMC) to solve the transport equation. In constructing the scheme, one has the freedom to choose between expanding the material temperature, or the equivalent black body radiation energy density at the material temperature, in terms of finite element basis functions. The former provides a linear treatment of the material energy while the latter provides a linear treatment of the radiative coupling between zones. Subject to the conditional use of a lumped material energy in the vicinity of strong gradients, possible with a linear treatment of the material energy, our approach provides a robust solution for time dependent transport of thermally emitted radiation that can address a wide range of problems. It produces accurate results in the diffusion limit
- …