484 research outputs found
Comparison of Various Improved-Partition Fuzzy c-Means Clustering Algorithms in Fast Color Reduction
This paper provides a comparative study of sev-
eral enhanced versions of the fuzzy
c
-means clustering al-
gorithm in an application of histogram-based image color
reduction. A common preprocessing is performed before clus-
tering, consisting of a preliminary color quantization, histogram
extraction and selection of frequently occurring colors of the
image. These selected colors will be clustered by tested
c
-means
algorithms. Clustering is followed by another common step,
which creates the output image. Besides conventional hard
(HCM) and fuzzy
c
-means (FCM) clustering, the so-called
generalized improved partition FCM algorithm, and several
versions of the suppressed FCM (s-FCM) in its conventional
and generalized form, are included in this study. Accuracy is
measured as the average color difference between pixels of the
input and output image, while efficiency is mostly characterized
by the total runtime of the performed color reduction. Nu-
merical evaluation found all enhanced FCM algorithms more
accurate, and four out of seven enhanced algorithms faster than
FCM. All tested algorithms can create reduced color images of
acceptable quality
Well-Posed Initial-Boundary Evolution in General Relativity
Maximally dissipative boundary conditions are applied to the initial-boundary
value problem for Einstein's equations in harmonic coordinates to show that it
is well-posed for homogeneous boundary data and for boundary data that is small
in a linearized sense. The method is implemented as a nonlinear evolution code
which satisfies convergence tests in the nonlinear regime and is robustly
stable in the weak field regime. A linearized version has been stably matched
to a characteristic code to compute the gravitational waveform radiated to
infinity.Comment: 5 pages, 6 figures; added another convergence plot to Fig. 2 + minor
change
Numerical stability for finite difference approximations of Einstein's equations
We extend the notion of numerical stability of finite difference
approximations to include hyperbolic systems that are first order in time and
second order in space, such as those that appear in Numerical Relativity. By
analyzing the symbol of the second order system, we obtain necessary and
sufficient conditions for stability in a discrete norm containing one-sided
difference operators. We prove stability for certain toy models and the
linearized Nagy-Ortiz-Reula formulation of Einstein's equations.
We also find that, unlike in the fully first order case, standard
discretizations of some well-posed problems lead to unstable schemes and that
the Courant limits are not always simply related to the characteristic speeds
of the continuum problem. Finally, we propose methods for testing stability for
second order in space hyperbolic systems.Comment: 18 pages, 9 figure
Algebraic stability analysis of constraint propagation
The divergence of the constraint quantities is a major problem in
computational gravity today. Apparently, there are two sources for constraint
violations. The use of boundary conditions which are not compatible with the
constraint equations inadvertently leads to 'constraint violating modes'
propagating into the computational domain from the boundary. The other source
for constraint violation is intrinsic. It is already present in the initial
value problem, i.e. even when no boundary conditions have to be specified. Its
origin is due to the instability of the constraint surface in the phase space
of initial conditions for the time evolution equations. In this paper, we
present a technique to study in detail how this instability depends on gauge
parameters. We demonstrate this for the influence of the choice of the time
foliation in context of the Weyl system. This system is the essential
hyperbolic part in various formulations of the Einstein equations.Comment: 25 pages, 5 figures; v2: small additions, new reference, publication
number, classification and keywords added, address fixed; v3: update to match
journal versio
A geometrically motivated coordinate system for exploring spacetime dynamics in numerical-relativity simulations using a quasi-Kinnersley tetrad
We investigate the suitability and properties of a quasi-Kinnersley tetrad
and a geometrically motivated coordinate system as tools for quantifying both
strong-field and wave-zone effects in numerical relativity (NR) simulations. We
fix the radial and latitudinal coordinate degrees of freedom of the metric,
using the Coulomb potential associated with the quasi-Kinnersley transverse
frame. These coordinates are invariants of the spacetime and can be used to
unambiguously fix the outstanding spin-boost freedom associated with the
quasi-Kinnersley frame (resulting in a preferred quasi-Kinnersley tetrad
(QKT)). In the limit of small perturbations about a Kerr spacetime, these
coordinates and QKT reduce to Boyer-Lindquist coordinates and the Kinnersley
tetrad, irrespective of the simulation gauge choice. We explore the properties
of this construction both analytically and numerically, and we gain insights
regarding the propagation of radiation described by a super-Poynting vector. We
also quantify in detail the peeling properties of the chosen tetrad and gauge.
We argue that these choices are particularly well suited for a rapidly
converging wave-extraction algorithm as the extraction location approaches
infinity, and we explore numerically the extent to which this property remains
applicable on the interior of a computational domain. Using a number of
additional tests, we verify that the prescription behaves as required in the
appropriate limits regardless of simulation gauge. We explore the behavior of
the geometrically motivated coordinate system in dynamical binary-black-hole NR
mergers, and find them useful for visualizing features in NR simulations such
as the spurious "junk" radiation. Finally, we carefully scrutinize the head-on
collision of two black holes and, for example, the way in which the extracted
waveform changes as it moves through the computational domain.Comment: 30 pages, 17 figures, 2 table
Tailoring Fe/Ag Superparamagnetic Composites by Multilayer Deposition
The magnetic properties of Fe/Ag granular multilayers were examined by SQUID
magnetization and Mossbauer spectroscopy measurements. Very thin (0.2 nm)
discontinuous Fe layers show superparamagnetic properties that can be tailored
by the thickness of both the magnetic and the spacer layers. The role of
magnetic interactions was studied in novel heterostructures of
superparamagnetic and ferromagnetic layers and the specific contribution of the
ferromagnetic layers to the low field magnetic susceptibility was identified.Comment: 5 pages and 3 figure
- …