104 research outputs found
The Dynamics of Ca2+ Ions within the Solvation Shell of Calbindin D9k
The encounter of a Ca2+ ion with a protein and its subsequent
binding to specific binding sites is an intricate process that cannot be fully
elucidated from experimental observations. We have applied Molecular Dynamics to
study this process with atomistic details, using Calbindin D9k (CaB) as a model
protein. The simulations show that in most of the time the Ca2+
ion spends within the Debye radius of CaB, it is being detained at the 1st and
2nd solvation shells. While being detained near the protein, the diffusion
coefficient of the ion is significantly reduced. However, due to the relatively
long period of detainment, the ion can scan an appreciable surface of the
protein. The enhanced propagation of the ion on the surface has a functional
role: significantly increasing the ability of the ion to scan the protein's
surface before being dispersed to the bulk. The contribution of this mechanism
to Ca2+ binding becomes significant at low ion concentrations,
where the intervals between successive encounters with the protein are getting
longer. The efficiency of the surface diffusion is affected by the distribution
of charges on the protein's surface. Comparison of the Ca2+
binding dynamics in CaB and its E60D mutant reveals that in the wild type (WT)
protein the carboxylate of E60 function as a preferred landing-site for the
Ca2+ arriving from the bulk, followed by delivering it to
the final binding site. Replacement of the glutamate by aspartate significantly
reduced the ability to transfer Ca2+ ions from D60 to the final
binding site, explaining the observed decrement in the affinity of the mutated
protein to Ca2+
Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis
Objectives: Tropomyosin receptor kinase A (TrkA) mediates nociceptor sensitisation by nerve growth factor (NGF), but it is unknown whether selective TrkA inhibition will be an effective strategy for treating osteoarthritis (OA) pain. We determined the effects of a TrkA inhibitor (AR786) on pain behaviour, synovitis and joint pathology in two rat OA models.
Methods: Knee OA was induced in rats by intraarticular monosodium-iodoacetate (MIA) injection or meniscal transection (MNX) and compared with saline injected or sham-operated controls. Pain behaviour was assessed as weight-bearing asymmetry and paw withdrawal threshold to punctate stimulation. Oral doses (30 mg/kg) of AR786 or vehicle were administered twice daily in either preventive (day −1 to –27) or treatment (day 14–28) protocols. Effect maintenance was evaluated for 2 weeks after treatment discontinuation. Alterations in knee structure (cartilage, subchondral bone and synovium) were examined by macroscopic visualisation of articular surfaces and histopathology.
Results: Preventive AR786 treatment inhibited pain behaviour development and therapeutic treatment attenuated established pain behaviour. Weight-bearing asymmetry increased 1 week after treatment discontinuation, but remained less than in vehicle- treated arthritic rats, whereas paw withdrawal thresholds returned to levels of untreated rats within 5 days of treatment discontinuation. AR786 treatment reduced MIA-induced synovitis and did not significantly affect osteochondral pathology in either model.
Conclusions: Blocking NGF activity by inhibiting TrkA reduced pain behaviour in two rat models of OA. Analgesia was observed both using preventive and treatment protocols, and was sustained after treatment discontinuation. Selective inhibitors of TrkA therefore hold potential for OA pain relief
Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling
In drug discovery, prediction of selectivity and toxicity
require the evaluation of cellular calcium homeostasis. The rat
is a preferred laboratory animal for pharmacology and
toxicology studies, while currently no calcium indicator
protein expressing rat model is available. We established a
transgenic rat strain stably expressing the GCaMP2
fluorescent calcium sensor by a transposon-based methodology.
Zygotes were co-injected with mRNA of transposase and a CAG-
GCaMP2 expressing construct, and animals with one
transgene copy were pre-selected by measuring fluorescence in
blood cells. A homozygous rat strain was generated with high
sensor protein expression in the heart, kidney, liver, and
blood cells. No pathological alterations were found in these
animals, and fluorescence measurements in cardiac tissue slices
and primary cultures demonstrated the applicability of this
system for studying calcium signaling. We show here that the
GCaMP2 expressing rat cardiomyocytes allow the
prediction of cardiotoxic drug side-effects, and provide
evidence for the role of Na+/Ca2+ exchanger and its beneficial
pharmacological modulation in cardiac reperfusion. Our data
indicate that drug-induced alterations and pathological
processes can be followed by using this rat model, suggesting
that transgenic rats expressing a calcium-sensitive protein
provide a valuable system for pharmacological and toxicological
studies
100% complete assignment of non-labile 1H, 13C, and 15N signals for calcium-loaded calbindin D9k P43G
Here we present the 100% complete assignment chemical shift of non-labile 1H, 15N and 13C nuclei of Calbindin D9k P43G. The assignment includes all non-exchangeable side chain nuclei, including ones that are rarely reported, such as LysNζ as well as the termini. NMR experiments required to achieve truly complete assignments are discussed. To the best of our knowledge our assignments for Calbindin D9k extend beyond previous studies reaching near-completeness (Vis et al. in Biochem 33:14858–14870, 1994; Yamazaki et al. in J Am Chem Soc 116:6464–6465, 1994; Yamazaki et al. in Biochem 32:5656–5669, 1993b)
PPARγ agonists inhibit growth and expansion of CD133+ brain tumour stem cells
Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARγ) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARγ agonist, 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARγ in gliosphere cells. These findings demonstrate that PPARγ agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour
PPARγ agonists inhibit growth and expansion of CD133+ brain tumour stem cells
Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARγ) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARγ agonist, 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARγ in gliosphere cells. These findings demonstrate that PPARγ agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour
Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning
The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation.McGovern Institute for Brain Research at MITNational Institutes of Health (U.S.) ((NIH grant 1-RC1-NS068103-01)National Institutes of Health (U.S.) (NIH grant R01-MH084966)Roberto Rocca Education Program (Fellowship)Massachusetts Institute of Technology. Undergraduate Research Opportunities Program (Fellowship)Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR grant RBIN04H5AS)Italy. Ministero dell'istruzione, dell'università e della ricerca (MIUR grant RBLA03FLJC)Italy. Ministero dell'istruzione, dell'università e della ricerca (FIRB n. RBAP10L8TY
- …