1,595 research outputs found
Magnetotransport in a two-dimensional electron system in dc electric fields
We report on nonequilibrium transport measurements in a high-mobility
two-dimensional electron system subject to weak magnetic field and dc
excitation. Detailed study of dc-induced magneto-oscillations, first observed
by Yang {\em et al}., reveals a resonant condition that is qualitatively
different from that reported earlier. In addition, we observe dramatic
reduction of resistance induced by a weak dc field in the regime of separated
Landau levels. These results demonstrate similarity of transport phenomena in
dc-driven and microwave-driven systems and have important implications for
ongoing experimental search for predicted quenching of microwave-induced
zero-resistance states by a dc current.Comment: Revised version, to appear in Phys. Rev.
Nonequilibrium Green's-Function Approach to the Suppression of Rectification at Metal--Mott-Insulator Interfaces
Suppression of rectification at metal--Mott-insulator interfaces, which is
previously shown by numerical solutions to the time-dependent Schr\"odinger
equation and experiments on real devices, is reinvestigated theoretically by
nonequilibrium Green's functions. The one-dimensional Hubbard model is used for
a Mott insulator. The effects of attached metallic electrodes are incorporated
into the self-energy. A scalar potential originating from work-function
differences and satisfying the Poisson equation is added to the model. For the
electron density, we decompose it into three parts. One is obtained by
integrating the local density of states over energy to the midpoint of the
electrodes' chemical potentials. The others, obtained by integrating lesser
Green's functions, are due to the couplings with the electrodes and correspond
to an inflow and an outflow of electrons. In Mott insulators, incoming
electrons and holes are extended over the whole system, avoiding further
accumulation of charge relative to the case without bias. This induces
collective charge transport and results in the suppression of rectification.Comment: 18 pages, Figs. 1(b), 2, and 8 replaced. Corrected typo
Simulation of Internal Undular Bores Propagating over a Slowly Varying Region
Internal undular bores have been observed in many parts of the world. Studies have shown that many marine structures face danger and risk of destruction caused by internal undular bores due to the amount of energy it carries. This paper looks at the transformation of internal undular bore in two-layer fluid flow under the influence of variable topography. Thus, the surface of the bottom is considered to be slowly varying. The appropriate mathematical model is the variable-coefficient extended Korteweg-de Vries equation. We are particularly interested in looking at the transformation of KdV-type and table-top undular bore over the variable topography region. The governing equation is solved numerically using the method of lines, where the spatial derivatives are first discretised using finite difference approximation so that the partial differential equation becomes a system of ordinary differential equations which is then solved by 4th order Runge-Kutta method. Our numerical results show that the evolution of internal undular bore over different types of varying depths regions leads to a number of adiabatic and non-adiabatic effects. When the depth decreases slowly, a solitary wavetrain is observed at the front of the transformed internal undular bore. On the other hand, when the depth increases slowly, we observe the generation of step-like wave and weakly nonlinear trailing wavetrain, the occurrence of multi-phase behaviour, the generation of transformed undular bore of negative polarity and diminishing transformed undular bore depending on the nature of the topography after the variable topography
Space-charge mechanism of aging in ferroelectrics: an exactly solvable two-dimensional model
A mechanism of point defect migration triggered by local depolarization
fields is shown to explain some still inexplicable features of aging in
acceptor doped ferroelectrics. A drift-diffusion model of the coupled charged
defect transport and electrostatic field relaxation within a two-dimensional
domain configuration is treated numerically and analytically. Numerical results
are given for the emerging internal bias field of about 1 kV/mm which levels
off at dopant concentrations well below 1 mol%; the fact, long ago known
experimentally but still not explained. For higher defect concentrations a
closed solution of the model equations in the drift approximation as well as an
explicit formula for the internal bias field is derived revealing the plausible
time, temperature and concentration dependencies of aging. The results are
compared to those due to the mechanism of orientational reordering of defect
dipoles.Comment: 8 pages, 4 figures. accepted to Physical Review
Oxidation mechanism in metal nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters
Zn nanoclusters (NCs) are deposited by Low-energy cluster beam deposition
technique. The mechanism of oxidation is studied by analysing their
compositional and morphological evolution over a long span of time (three
years) due to exposure to ambient atmosphere. It is concluded that the
mechanism proceeds in two steps. In the first step, the shell of ZnO forms over
Zn NCs rapidly up to certain limiting thickness: with in few days -- depending
upon the size -- Zn NCs are converted to Zn-ZnO (core-shell), Zn-void-ZnO, or
hollow ZnO type NCs. Bigger than ~15 nm become Zn-ZnO (core-shell) type: among
them, NCs above ~25 nm could able to retain their initial geometrical shapes
(namely triangular, hexagonal, rectangular and rhombohedral), but ~25 to 15 nm
size NCs become irregular or distorted geometrical shapes. NCs between ~15 to 5
nm become Zn-void-ZnO type, and smaller than ~5 nm become ZnO hollow sphere
type i.e. ZnO hollow NCs. In the second step, all Zn-void-ZnO and Zn-ZnO
(core-shell) structures are converted to hollow ZnO NCs in a slow and gradual
process, and the mechanism of conversion proceeds through expansion in size by
incorporating ZnO monomers inside the shell. The observed oxidation behaviour
of NCs is compared with theory of Cabrera - Mott on low-temperature oxidation
of metal.Comment: 9 pages, 8 figure
A proposal for a new type of thin-film field-emission display by edge breakdown of MIS structure
A new type of field emission display(FED) based on an edge-enhance electron
emission from metal-insulator-semiconductor (MIS) thin film structure is
proposed. The electrons produced by an avalanche breakdown in the semiconductor
near the edge of a top metal electrode are initially injected to the thin film
of an insulator with a negative electron affinity (NEA), and then are injected
into vacuum in proximity to the top electrode edge. The condition for the
deep-depletition breakdown near the edge of the top metal electrode is
analytically found in terms of ratio of the insulator thickness to the maximum
(breakdown) width of the semiconductor depletition region: this ratio should be
less than 2/(3 \pi - 2) = 0.27. The influence of a neighboring metal electrode
and an electrode thickness on this condition are analyzed. Different practical
schemes of the proposed display with a special reference to M/CaF_2/Si
structure are considered.Comment: 11 pages, 5 figure
Relative effects on stratospheric ozone of halogenated methanes and ethanes of social and industrial interest
Four atmospheric modeling groups have calculated relative effects of several halocarbons (chlorofluorocarbons (CFC's)-11, 12, 113, 114, and 115; hydrochlorofluorocarbons (HCFC's) 22, 123, 124, 141b, and 142b; hydrofluorocarbons (HFC's) 125, 134a, 143a, and 152a, carbon tetrachloride; and methyl chloroform) on stratospheric ozone. Effects on stratospheric ozone were calculated for each compound and normalized relative to the effect of CFC-11. These models include the representations for homogeneous physical and chemical processes in the middle atmosphere but do no account for either heterogeneous chemistry or polar dynamics which are important in the spring time loss of ozone over Antarctica. Relative calculated effects using a range of models compare reasonably well. Within the limits of the uncertainties of these model results, compounds now under consideration as functional replacements for fully halogenated compounds have modeled stratospheric ozone reductions of 10 percent or less of that of CFC-11. Sensitivity analyses examined the sensitivity of relative calculated effects to levels of other trace gases, assumed transport in the models, and latitudinal and seasonal local dependencies. Relative effects on polar ozone are discussed in the context of evolving information on the special processes affecting ozone, especially during polar winter-springtime. Lastly, the time dependency of relative effects were calculated
Field-induced metal-insulator transition and switching phenomenon in correlated insulators
We study the nonequilibrium switching phenomenon associated with the
metal-insulator transition under electric field E in correlated insulator by a
gauge-covariant Keldysh formalism. Due to the feedback effect of the resistive
current I, this occurs as a first-order transition with a hysteresis of I-V
characteristics having a lower threshold electric field (\sim 10^4 Vcm^{-1})
much weaker than that for the Zener breakdown. It is also found that the
localized mid-gap states introduced by impurities and defects act as hot spots
across which the resonant tunneling occurs selectively, which leads to the
conductive filamentary paths and reduces the energy cost of the switching
function.Comment: 5 pages, 3 figures. A study on the metal-insulator transition in
correlated insulators was adde
Intrinsic charge transport on the surface of organic semiconductors
The novel technique based on air-gap transistor stamps enabled realization of
the intrinsic (not dominated by static disorder) transport of the
electric-field-induced charge carriers on the surface of rubrene crystals over
a wide temperature range. The signatures of the intrinsic transport are the
anisotropy of the carrier mobility, mu, and the growth of mu with cooling. The
anisotropy of mu vanishes in the activation regime at lower temperatures, where
the charge transport becomes dominated by shallow traps. The deep traps,
deliberately introduced into the crystal by X-ray radiation, increase the
field-effect threshold without affecting the mobility. These traps filled above
the field-effect threshold do not scatter the mobile polaronic carriers.Comment: 10 pages, 4 figure
- …