6 research outputs found
XPS and FT-IR Characterization of Selected Synthetic Corrosion Products of Zinc Expected in Neutral Environment Containing Chloride Ions
ZnO, Zn(OH)2, Zn5(OH)8Cl2·H2O, ZnCO3, and Zn5(CO3)2(OH)6 synthetic powders were prepared by chemical or solid-state method. Their crystalline phase structure, thermal behavior, and morphology were examined. Characteristic infrared absorbance bands were estimated by means of FT-IR ATR spectroscopy. X-ray photoelectron spectroscopy (XPS) allowed to calculate the modified Auger parameters (α ′) thereof to 2010.2, 2009.3, 2009.4, 2009.7, and 2009.8 eV, respectively for ZnO, Zn(OH)2, Zn5(OH)8Cl2·H2O, ZnCO3, and Zn5(CO3)2(OH)6. Finally, comparison of surface composition may be crucial to evaluation of the unknown experimental spectra of corrosion products formed on the surface of zinc alloy coatings exposed in NaCl solution
The effect of catalyst precursors and conditions of preparing Pt and Pd-Pt catalysts on their activity in the oxidation of hexane
The effectiveness of under-air n-hexane oxidation over monolithic catalysts made of heat-resistant foil, containing Pt, Pd or Pt-Pd, was compared. Pt and Pd precursors, either containing chlorine or devoid of chlorine, were used to prepare the catalysts. The chlorine- containing Pt (H2PtCl6) and Pd (PdCl2) precursors were found to lower the activity of the catalysts in hexane oxidation. Studies of the effect of 0.15% Pt/Al2O3 catalyst (using H2PtCl6 as the precursor) calcination conditions on catalyst activity showed the catalyst calcined in static air at 500°C to be the most active. Airflow calcination of the catalyst does not change its catalytic properties. In comparison with the 0.5% Pd/Al2O3 catalyst obtained from Pd(NO3)2, the use of a bimetallic 0.5% Pd/0.1% Pt/Al2O3 catalyst, in which the precursors were Pd(NO3)2 and Pt(NO3)4, resulted in the lowering of 10% and 50% n-hexane temperature by 15°C and 10°C
Study of the Catalytic Activity and Surface Properties of Manganese-Zinc Ferrite Prepared from Used Batteries
The catalytic activity of the Mn-Zn ferrites obtained by chemical methods from a solution after acid leaching of waste Zn-C and Zn-Mn batteries was studied. Precursors of metal ions (Fe, Mn, and Zn) were obtained using different precipitating agents ((NH4)2C2O4, Na2CO3, and NaOH), and then, the combustion route was used to prepare catalytically active nanocrystalline ferrites. The obtained ferrite catalysts differ in terms of microstructure, the number of acid and base sites, and the surface composition depending on the ion precursor used in the combustion process. All prepared materials were catalytically active in the butan-1-ol conversion test. Depending on the ion precursor applied in the combustion process, a selective catalyst towards aldehyde (carbonate precursor) or ketone (hydroxide precursor) formation can be obtained. Furthermore, the catalyst prepared from the hydroxide precursor exhibits the highest catalytic activity in the n-butanol test (nearly 100% conversion under the experiment conditions)
Effect of Annealing on Surface Morphology and Structure of Nickel Coatings Deposited from Deep Eutectic Solvents
Nanocrystalline nickel coatings deposited on a copper base material from DES made of choline chloride and ethylene glycol in 1:2 molar ratio containing 1 mol dm−3 NiCl2⋅6H2O were modified through post-deposition heat treatment at the temperatures from 100 to 400 °C. As-deposited coatings were composed of spheroidal agglomerates with the size of several hundred nanometers interspersed with lamellar crystals, but after annealing at 300 °C and 400 °C only single nano-sized plates embedded in a granular and porous layer remained. As the temperature of the heat treatment increased from 100 °C to 400 °C, the mean crystallite size increased from 13 to 35 nm. The change in crystallite size was accompanied by a change in microhardness, the maximum value of which was measured for the annealed coating at 200 °C. As a result of heat treatment, coatings were gradually covered by a layer of oxidized nickel species. XPS analyses showed that NiOOH and Ni(OH)2 dominated among them. Above 200 °C the share of these compounds began to decline in the face of the increasing share of NiO. This, in turn, clearly translated into a deterioration of the corrosion resistance of Ni coatings annealed at 300 °C, and especially at 400 °C, during exposure in 0.05 mol dm−3 NaCl solution