10 research outputs found
“Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine β‑Synthase Inhibitor that Attenuates Cellular H\u3csub\u3e2\u3c/sub\u3eS Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model
The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine β-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a “zipped” approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C2-symmetric CBS product (L,L)-cystathionine. The “zipped” concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine−imine interchange. It is demonstrated that the most potent “zipped” inhibitor 6S reduces H2S production in SHSY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∼70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia.
Supplementary information (112 pp.) is attached (below)
“Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine β‑Synthase Inhibitor that Attenuates Cellular H\u3csub\u3e2\u3c/sub\u3eS Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model
The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine β-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a “zipped” approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C2-symmetric CBS product (L,L)-cystathionine. The “zipped” concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine−imine interchange. It is demonstrated that the most potent “zipped” inhibitor 6S reduces H2S production in SHSY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∼70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia.
Supplementary information (112 pp.) is attached (below)
Thiophene-2-carbaldehyde azine
The asymmetric unit of the title compound, C10H8N2S2, is composed of two independent half-molecules, each residing on a center of symmetry. In the crystal, weak C—H...π interactions join the two symmetry-independent molecules together into interlinked chains parallel to [011]. The crystal structure was refined as a two-component pseudo-merohedral twin using the twin law 001 0-10 100. The refined domain fractions are 0.516 (3) and 0.484 (3)
“Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine β‑Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model
[Image: see text] The gaseous neuromodulator H(2)S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine β-synthase (CBS) is the primary mediator of H(2)S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a “zipped” approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C(2)-symmetric CBS product (l,l)-cystathionine. The “zipped” concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine–imine interchange. It is demonstrated that the most potent “zipped” inhibitor 6S reduces H(2)S production in SH-SY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∼70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia
“Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine β‑Synthase Inhibitor that Attenuates Cellular H<sub>2</sub>S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model
The
gaseous neuromodulator H<sub>2</sub>S is associated with neuronal
cell death pursuant to cerebral ischemia. As cystathionine β-synthase
(CBS) is the primary mediator of H<sub>2</sub>S biogenesis in the
brain, it has emerged as a potential target for the treatment of stroke.
Herein, a “zipped” approach by alkene cross-metathesis
into CBS inhibitor candidate synthesis is demonstrated. The inhibitors
are modeled after the pseudo-<i>C</i><sub>2</sub>-symmetric
CBS product (l,l)-cystathionine. The “zipped”
concept means only half of the inhibitor needs be constructed; the
two halves are then fused by olefin cross-metathesis. Inhibitor design
is also mechanism-based, exploiting the favorable kinetics associated
with hydrazine-imine interchange as opposed to the usual imine–imine
interchange. It is demonstrated that the most potent “zipped”
inhibitor <b>6S</b> reduces H<sub>2</sub>S production in SH-SY5Y
cells overexpressing CBS, thereby reducing cell death. Most importantly,
CBS inhibitor <b>6S</b> dramatically reduces infarct volume
(1 h post-stroke treatment; ∼70% reduction) in a rat transient
middle cerebral artery occlusion model for ischemia
Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study
Purpose
In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials.
Methods
We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021.
Results
2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28.
Conclusions
HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
Presentation, management, and outcomes of older compared to younger adults with hospital-acquired bloodstream infections in the intensive care unit: a multicenter cohort study
Purpose: Older adults admitted to the intensive care unit (ICU) usually have fair baseline functional capacity, yet their age and frailty may compromise their management. We compared the characteristics and management of older (≥ 75 years) versus younger adults hospitalized in ICU with hospital-acquired bloodstream infection (HA-BSI). Methods: Nested cohort study within the EUROBACT-2 database, a multinational prospective cohort study including adults (≥ 18 years) hospitalized in the ICU during 2019-2021. We compared older versus younger adults in terms of infection characteristics (clinical signs and symptoms, source, and microbiological data), management (imaging, source control, antimicrobial therapy), and outcomes (28-day mortality and hospital discharge). Results: Among 2111 individuals hospitalized in 219 ICUs with HA-BSI, 563 (27%) were ≥ 75 years old. Compared to younger patients, these individuals had higher comorbidity score and lower functional capacity; presented more often with a pulmonary, urinary, or unknown HA-BSI source; and had lower heart rate, blood pressure and temperature at presentation. Pathogens and resistance rates were similar in both groups. Differences in management included mainly lower rates of effective source control achievement among aged individuals. Older adults also had significantly higher day-28 mortality (50% versus 34%, p < 0.001), and lower rates of discharge from hospital (12% versus 20%, p < 0.001) by this time. Conclusions: Older adults with HA-BSI hospitalized in ICU have different baseline characteristics and source of infection compared to younger patients. Management of older adults differs mainly by lower probability to achieve source control. This should be targeted to improve outcomes among older ICU patients
The role of centre and country factors on process and outcome indicators in critically ill patients with hospital-acquired bloodstream infections
Purpose: The primary objective of this study was to evaluate the associations between centre/country-based factors and two important process and outcome indicators in patients with hospital-acquired bloodstream infections (HABSI). Methods: We used data on HABSI from the prospective EUROBACT-2 study to evaluate the associations between centre/country factors on a process or an outcome indicator: adequacy of antimicrobial therapy within the first 24 h or 28-day mortality, respectively. Mixed logistical models with clustering by centre identified factors associated with both indicators. Results: Two thousand two hundred nine patients from two hundred one intensive care units (ICUs) were included in forty-seven countries. Overall, 51% (n = 1128) of patients received an adequate antimicrobial therapy and the 28-day mortality was 38% (n = 839). The availability of therapeutic drug monitoring (TDM) for aminoglycosides everyday [odds ratio (OR) 1.48, 95% confidence interval (CI) 1.03-2.14] or within a few hours (OR 1.79, 95% CI 1.34-2.38), surveillance cultures for multidrug-resistant organism carriage performed weekly (OR 1.45, 95% CI 1.09-1.93), and increasing Human Development Index (HDI) values were associated with adequate antimicrobial therapy. The presence of intermediate care beds (OR 0.63, 95% CI 0.47-0.84), TDM for aminoglycoside available everyday (OR 0.66, 95% CI 0.44-1.00) or within a few hours (OR 0.51, 95% CI 0.37-0.70), 24/7 consultation of clinical pharmacists (OR 0.67, 95% CI 0.47-0.95), percentage of vancomycin-resistant enterococci (VRE) between 10% and 25% in the ICU (OR 1.67, 95% CI 1.00-2.80), and decreasing HDI values were associated with 28-day mortality. Conclusion: Centre/country factors should be targeted for future interventions to improve management strategies and outcome of HABSI in ICU patients