9 research outputs found

    Thermostructural and Elastic Properties of PbTe and Pb 0.884 Cd 0.116 Te: A Combined Low-Temperature and High-Pressure X-ray Diffraction Study of Cd-Substitution Effects

    Get PDF
    Rocksalt-type (Pb,Cd)Te belongs to IV–VI semiconductors exhibiting thermoelectric properties. With the aim of understanding of the influence of Cd substitution in PbTe on thermostructural and elastic properties, we studied PbTe and Pb0.884Cd0.116Te (i) at low temperatures (15 to 300 K) and (ii) at high pressures within the stability range of NaCl-type PbTe (up to 4.5 GPa). For crystal structure studies, powder and single crystal X-ray diffraction methods were used. Modeling of the data included the second-order Grüneisen approximation of the unit-cell-volume variation, V(T), the Debye expression describing the mean square atomic displacements (MSDs), u2>(T), and Birch–Murnaghan equation of state (BMEOS). The fitting of the temperature-dependent diffraction data provided model variations of lattice parameter, the thermal expansion coefficient, and MSDs with temperature. A comparison of the MSD runs simulated for the PbTe and mixed (Pb,Cd)Te crystal leads to the confirmation of recent findings that the cation displacements are little affected by Cd substitution at the Pb site; whereas the Te displacements are markedly higher for the mixed crystal. Moreover, information about static disorder caused by Cd substitution is obtained. The calculations provided two independent ways to determine the values of the overall Debye temperature, θD. The resulting values differ only marginally, by no more than 1 K for PbTe and 7 K for Pb0.884Cd0.116Te crystals. The θD values for the cationic and anionic sublattices were determined. The Grüneisen parameter is found to be nearly independent of temperature. The variations of unit-cell size with rising pressure (the NaCl structure of Pb0.884Cd0.116Te sample was conserved), modeled with the BMEOS, provided the dependencies of the bulk modulus, K, on pressure for both crystals. The K0 value is 45.6(2.5) GPa for PbTe, whereas that for Pb0.884Cd0.116Te is significantly reduced, 33.5(2.8) GPa, showing that the lattice with fractional Cd substitution is less stiff than that of pure PbTe. The obtained experimental values of θD and K0 for Pb0.884Cd0.116Te are in line with the trends described in recently reported theoretical study for (Pb,Cd)Te mixed crystals

    Fragility of the Dirac Cone Splitting in Topological Crystalline Insulator Heterostructures

    Full text link
    The 'double Dirac cone' 2D topological interface states found on the (001) faces of topological crystalline insulators such as Pb1−x_{1-x}Snx_{x}Se feature degeneracies located away from time reversal invariant momenta, and are a manifestation of both mirror symmetry protection and valley interactions. Similar shifted degeneracies in 1D interface states have been highlighted as a potential basis for a topological transistor, but realizing such a device will require a detailed understanding of the intervalley physics involved. In addition, the operation of this or similar devices outside of ultra-high vacuum will require encapsulation, and the consequences of this for the topological interface state must be understood. Here we address both topics for the case of 2D surface states using angle-resolved photoemission spectroscopy. We examine bulk Pb1−x_{1-x}Snx_{x}Se(001) crystals overgrown with PbSe, realizing trivial/topological heterostructures. We demonstrate that the valley interaction that splits the two Dirac cones at each Xˉ\bar{X} is extremely sensitive to atomic-scale details of the surface, exhibiting non-monotonic changes as PbSe deposition proceeds. This includes an apparent total collapse of the splitting for sub-monolayer coverage, eliminating the Lifshitz transition. For a large overlayer thickness we observe quantized PbSe states, possibly reflecting a symmetry confinement mechanism at the buried topological interface

    Epitaxial Metal Halide Perovskites by Inkjet‐Printing on Various Substrates

    Get PDF
    Metal‐halide‐perovskites revolutionized the field of thin‐film semiconductor technology, due to their favorable optoelectronic properties and facile solution processing. Further improvements of perovskite thin‐film devices require structural coherence on the atomic scale. Such perfection is achieved by epitaxial growth, a method that is based on the use of high‐end deposition chambers. Here epitaxial growth is enabled via a ≈1000 times cheaper device, a single nozzle inkjet printer. By printing, single‐crystal micro‐ and nanostructure arrays and crystalline coherent thin films are obtained on selected substrates. The hetero‐epitaxial structures of methylammonium PbBr3 grown on lattice matching substrates exhibit similar luminescence as bulk single crystals, but the crystals phase transitions are shifted to lower temperatures, indicating a structural stabilization due to interfacial lattice anchoring by the substrates. Thus, the inkjet‐printing of metal‐halide perovskites provides improved material characteristics in a highly economical way, as a future cheap competitor to the high‐end semiconductor growth technologies.DFG, 404984854, Bleifreie Perovksite für die RöntgendetektionDFG, 399073171, GRK 2495: Energiekonvertierungssysteme: von Materialien zu Bauteile

    Perspectives of solution epitaxially grown defect tolerant lead-halide-perovskites and lead-chalcogenides

    No full text
    Lead-chalcogenides and lead-halide-perovskites exhibit similar physical properties, which can be summarized as defect tolerant behavior. While the lead-chalcogenides have been pioneering materials in vapor phase epitaxy, metal-halide-perovskites offer the possibility for epitaxial growth from solutions by techniques such as spin or drop casting. The obtained microstructures show promising optical properties, and in a showcase example of formamidinium-lead-tribromide on lead sulfide, we show first lasing results. These results open up several perspectives for solution epitaxial structures, including electrically pumped quantum devices, demanded not only for lighting but also for quantum information technology, which would be another milestone achievement for metal–halide semiconductors

    Highly Stable Lasing from Solution‐Epitaxially Grown Formamidinium‐Lead‐Bromide Micro‐Resonators

    No full text
    High-quality epitaxial growth of oriented microcrystallites on a semiconductor substrate is demonstrated here for formamidinium lead bromide perovskite, by drop casting of precursor solutions in air. The microcrystallites exhibit green photoluminescence at room temperature, as well as lasing with low thresholds. Lasing is observed even though the substrate is fully opaque at the lasing wavelengths, and even though it has a higher refractive index as the perovskite active material. Moreover, the lasing is stable for more than 109 excitation pulses, which is more than what is previously achieved for devices kept in the air. Such highly stable lasing under pulsed excitation represents an important step towards continuous mode operation or even electrical excitation in future perovskite-based devices
    corecore