64 research outputs found

    Spontaneous chiral symmetry breaking in the linked cluster expansion

    Get PDF
    We investigate dynamical chiral symmetry breaking in the Coulomb gauge Hamiltonian QCD. Within the framework of the linked cluster expansion we extend the BCS ansatz for the vacuum and include correlation beyond the quark-antiquark paring. In particular we study the effects of the three-body correlations involving quark-antiquark and transverse gluons. The high momentum behavior of the resulting gap equation is discussed and numerical computation of the chiral symmetry breaking is presented.Comment: 13 pages, 9 figure

    Special relativity constraints on the effective constituent theory of hybrids

    Get PDF
    We consider a simplified constituent model for relativistic strong-interaction decays of hybrid mesons. The model is constructed using rules of renormalization group procedure for effective particles in light-front quantum field theory, which enables us to introduce low-energy phenomenological parameters. Boost covariance is kinematical and special relativity constraints are reduced to the requirements of rotational symmetry. For a hybrid meson decaying into two mesons through dissociation of a constituent gluon into a quark-anti-quark pair, the simplified constituent model leads to a rotationally symmetric decay amplitude if the hybrid meson state is made of a constituent gluon and a quark-anti-quark pair of size several times smaller than the distance between the gluon and the pair, as if the pair originated from one gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure

    Nonperturbative Renormalization and the QCD Vacuum

    Full text link
    We present a self consistent approach to Coulomb gauge Hamiltonian QCD which allows one to relate single gluon spectral properties to the long range behavior of the confining interaction. Nonperturbative renormalization is discussed. The numerical results are in good agreement with phenomenological and lattice forms of the static potential.Comment: 23 pages in RevTex, 4 postscript figure

    Coulomb Gauge QCD, Confinement, and the Constituent Representation

    Get PDF
    Quark confinement and the genesis of the constituent quark model are examined in nonperturbative QCD in Coulomb gauge. We employ a self-consistent method to construct a quasiparticle basis and to determine the quasiparticle interaction. The results agree remarkably well with lattice computations. They also illustrate the mechanism by which confinement and constituent quarks emerge, provide support for the Gribov-Zwanziger confinement scenario, clarify several perplexing issues in the constituent quark model, and permit the construction of an improved model of low energy QCD.Comment: 43 pages, 14 figures, revtex, uses psfig.st

    Analytical approach to chiral symmetry breaking in Minkowsky space

    Full text link
    The mass gap equation for spontaneous chiral symmetry breaking is studied directly in Minkowsky space. In hadronic physics, spontaneous chiral symmetry breaking is crucial to generate a constituent mass for the quarks, and to produce the Partially Conserved Axial Current theorems, including a small mass for the pion. Here a class of finite kernels is used, expanded in Yukawa interactions. The Schwinger-Dyson equation is solved with an analytical approach. This improves the state of the art of solving the mass gap equation, which is usually solved with the equal-time approximation or with the Euclidean approximation. The mapping from the Euclidean space to the Minkowsky space is also illustrated.Comment: 7 pages, 3 figure

    Hybrid Decays

    Get PDF
    The heavy quark expansion of Quantum Chromodynamics and the strong coupling flux tube picture of nonperturbative glue are employed to develop the phenomenology of hybrid meson decays. The decay mechanism explicitly couples gluonic degrees of freedom to the pair produced quarks and hence does not obey the well known, but model-dependent, selection rule which states that hybrids do not decay to pairs of L=0 mesons. However, the nonperturbative nature of gluonic excitations in the flux tube picture leads to a new selection rule: light hybrids do not decay to pairs of identical mesons. New features of the model are highlighted and partial widths are presented for several low lying hybrid states.Comment: 13 pages, 1 table, revte

    Boost operators in Coulomb-gauge QCD: the pion form factor and Fock expansions in phi radiative decays

    Get PDF
    In this article we rederive the Boost operators in Coulomb-Gauge Yang-Mills theory employing the path-integral formalism and write down the complete operators for QCD. We immediately apply them to note that what are usually called the pion square, quartic... charge radii, defined from derivatives of the pion form factor at zero squared momentum transfer, are completely blurred out by relativistic and interaction corrections, so that it is not clear at all how to interpret these quantities in terms of the pion charge distribution. The form factor therefore measures matrix elements of powers of the QCD boost and Moeller operators, weighted by the charge density in the target's rest frame. In addition we remark that the decomposition of the eta' wavefunction in quarkonium, gluonium, ... components attempted by the KLOE collaboration combining data from phi radiative decays, requires corrections due to the velocity of the final state meson recoiling against a photon. This will be especially important if such decompositions are to be attempted with data from J/psi decays.Comment: 14 pages, 4 figure

    Selection rules for J^PC Exotic Hybrid Meson Decay in Large-N_c

    Full text link
    The coupling of a neutral hybrid {1,3,5...}^-+ exotic particle (or current) to two neutral (hybrid) meson particles with the same J^PC and J=0 is proved to be sub-leading to the usual large-N_c QCD counting. The coupling of the same exotic particle to certain two - (hybrid) meson currents with the same J^PC and J=0 is also sub-leading. The decay of a {1,3,5...}^-+ hybrid to eta pi^0, eta' pi^0, eta' eta, eta(1295) pi^0, pi(1300)^0 pi0, eta(1440) pi^0, a_0(980)^0 sigma or f_0(980) sigma is sub-leading, assuming that these final state particles are (hybrid) mesons in the limit of large N_c.Comment: 16 pages, LaTeX. Main paper shortened/rewritten and appendices expanded. Implications for phenomenology of exotic hybrid mesons clarifie

    Heat-kernel expansion and counterterms of the Faddeev-Popov determinant in Coulomb and Landau gauge

    Full text link
    The Faddeev-Popov determinant of Landau gauge in d dimensions and Coulomb gauge in d+1 dimensions is calculated in the heat-kernel expansion up to next-to-leading order. The UV-divergent parts in d=3,4 are isolated and the counterterms required for a non-perturbative treatment of the Faddeev-Popov determinant are determined.Comment: 7 page

    Measurement of hybrid content of heavy quarkonia using lattice NRQCD

    Get PDF
    Using lowest-order lattice NRQCD to create heavy meson propagators and applying the spin-dependent interaction, cB−g2mqσ⃗⋅B⃗c_B^{} \frac{-g}{2m_q}\vec\sigma\cdot\vec{B}, at varying intermediate time slices, we compute the off-diagonal matrix element of the Hamiltonian for the quarkonium-hybrid two-state system. Thus far, we have results for one set of quenched lattices with an interpolation in quark mass to match the bottomonium spectrum. After diagonalization of the two-state Hamiltonian, we find the ground state of the ΄\Upsilon to show a 0.0035(1)cB20.0035(1)c_B^2 (with cB2∌1.5−3.1c_B^2 \sim 1.5-3.1) probability admixture of hybrid, ∣bbˉg>|b\bar{b}g>.Comment: 11 pages, 4 figures, to appear in Phys Rev
    • 

    corecore