3 research outputs found

    The biodistribution and clearance of AlbudAb, a novel biopharmaceutical medicine platform, assessed via PET imaging in humans

    No full text
    Abstract: Conjugation or fusion to AlbudAbs™ (albumin-binding domain antibodies) is a novel approach to extend the half-life and alter the tissue distribution of biological and small molecule therapeutics. To understand extravasation kinetics and extravascular organ concentrations of AlbudAbs in humans, we studied tissue distribution and elimination of a non-conjugated 89Zr-labeled AlbudAb in healthy volunteers using positron emission tomography/computed tomography (PET/CT). Methods: A non-conjugated AlbudAb (GSK3128349) was radiolabeled with 89Zr and a single 1 mg (~ 15 MBq) dose intravenously administered to eight healthy males. 89Zr-AlbudAb tissue distribution was followed for up to 7 days with four whole-body PET/CT scans. 89Zr-AlbudAb tissue concentrations were quantified in organs of therapeutic significance, measuring standardized uptake value and tissue/plasma ratios. Plasma pharmacokinetics were assessed by gamma counting and LC-MS/MS of blood samples. Results: 89Zr-AlbudAb administration and PET/CT procedures were well tolerated, with no drug-related immunogenicity or adverse events. 89Zr-AlbudAb rapidly distributed throughout the vasculature, with tissue/plasma ratios in the liver, lungs, and heart relatively stable over 7 days post-dose, ranging between 0.1 and 0.5. The brain tissue/plasma ratio of 0.025 suggested minimal AlbudAb blood-brain barrier penetration. Slowly increasing ratios in muscle, testis, pancreas, and spleen reflected either slow AlbudAb penetration and/or 89Zr residualization in these organs. Across all tissues evaluated, the kidney tissue/plasma ratio was highest (0.5–1.5 range) with highest concentration in the renal cortex. The terminal half-life of the 89Zr-AlbudAb was 18 days. Conclusion: Evaluating the biodistribution of 89Zr-AlbudAb in healthy volunteers using a low radioactivity dose was successful (total subject exposure ~ 10 mSv). Results indicated rapid formation of reversible, but stable, complexes between AlbudAb and albumin upon dosing. 89Zr-AlbudAb demonstrated albumin-like pharmacokinetics, including limited renal elimination. This novel organ-specific distribution data for AlbudAbs in humans will facilitate a better selection of drug targets to prosecute using the AlbudAb platform and significantly contribute to modeling work optimizing dosing of therapeutic AlbudAbs in the clinic

    The biodistribution and clearance of AlbudAb, a novel biopharmaceutical medicine platform, assessed via PET imaging in humans

    Get PDF
    Conjugation or fusion to AlbudAbs (albumin-binding domain antibodies) is a novel approach to extend the half-life and alter the tissue distribution of biological and small molecule therapeutics. To understand extravasation kinetics and extravascular organ concentrations of AlbudAbs in humans, we studied tissue distribution and elimination of a non-conjugated Zr-89-labeled AlbudAb in healthy volunteers using positron emission tomography/computed tomography (PET/CT).MethodsA non-conjugated AlbudAb (GSK3128349) was radiolabeled with Zr-89 and a single 1mg (similar to 15MBq) dose intravenously administered to eight healthy males. Zr-89-AlbudAb tissue distribution was followed for up to 7days with four whole-body PET/CT scans. Zr-89-AlbudAb tissue concentrations were quantified in organs of therapeutic significance, measuring standardized uptake value and tissue/plasma ratios. Plasma pharmacokinetics were assessed by gamma counting and LC-MS/MS of blood samples.Results(89)Zr-AlbudAb administration and PET/CT procedures were well tolerated, with no drug-related immunogenicity or adverse events. Zr-89-AlbudAb rapidly distributed throughout the vasculature, with tissue/plasma ratios in the liver, lungs, and heart relatively stable over 7days post-dose, ranging between 0.1 and 0.5. The brain tissue/plasma ratio of 0.025 suggested minimal AlbudAb blood-brain barrier penetration. Slowly increasing ratios in muscle, testis, pancreas, and spleen reflected either slow AlbudAb penetration and/or Zr-89 residualization in these organs. Across all tissues evaluated, the kidney tissue/plasma ratio was highest (0.5-1.5 range) with highest concentration in the renal cortex. The terminal half-life of the Zr-89-AlbudAb was 18days.ConclusionEvaluating the biodistribution of Zr-89-AlbudAb in healthy volunteers using a low radioactivity dose was successful (total subject exposure similar to 10mSv). Results indicated rapid formation of reversible, but stable, complexes between AlbudAb and albumin upon dosing. Zr-89-AlbudAb demonstrated albumin-like pharmacokinetics, including limited renal elimination. This novel organ-specific distribution data for AlbudAbs in humans will facilitate a better selection of drug targets to prosecute using the AlbudAb platform and significantly contribute to modeling work optimizing dosing of therapeutic AlbudAbs in the clinic

    2022 White Paper on Recent Issues in Bioanalysis: ICH M10 BMV Guideline & Global Harmonization; Hybrid Assays; Oligonucleotides & ADC; Non-Liquid & Rare Matrices; Regulatory Inputs (Part 1A - Recommendations on Mass Spectrometry, Chromatography and Sample Preparation, Novel Technologies, Novel Modalities, and Novel Challenges, ICH M10 BMV Guideline & Global Harmonization Part 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV, Biomarkers/CDx/BAV, Immunogenicity, Gene & Cell Therapy and Vaccine).

    No full text
    The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively
    corecore