214 research outputs found

    Correlation Functions in Disordered Systems

    Full text link
    {Recently, we found that the correlation between the eigenvalues of random hermitean matrices exhibits universal behavior. Here we study this universal behavior and develop a diagrammatic approach which enables us to extend our previous work to the case in which the random matrix evolves in time or varies as some external parameters vary. We compute the current-current correlation function, discuss various generalizations, and compare our work with the work of other authors. We study the distribution of eigenvalues of Hamiltonians consisting of a sum of a deterministic term and a random term. The correlation between the eigenvalues when the deterministic term is varied is calculated.}Comment: 19 pages, figures not included (available on request), Tex, NSF-ITP-93-12

    Electron Standing Wave Formation in Atomic Wires

    Full text link
    Using the Landauer formulation of transport theory and tight binding models of the electronic structure, we study electron transport through atomic wires that form 1D constrictions between pairs of metallic nano-contacts. Our results are interpreted in terms of electron standing waves formed in the atomic wires due to interference of electron waves reflected at the ends of the atomic constrictions. We explore the influence of the chemistry of the atomic wire-metal contact interfaces on these standing waves and the associated transport resonances by considering two types of atomic wires: gold wires attached to gold contacts and carbon wires attached to gold contacts. We find that the conductance of the gold wires is roughly 1G0=2e2/h1 G_0 = 2 e^2/h for the wire lengths studied, in agreement with experiments. By contrast, for the carbon wires the conductance is found to oscillate strongly as the number of atoms in the wire varies, the odd numbered chains being more conductive than the even numbered ones, in agreement with previous theoretical work that was based on a different model of the carbon wire and metal contacts.Comment: 14 pages, includes 6 figure

    Vortex dissipation and level dynamics for the layered superconductors with impurities

    Full text link
    We study parametric level statistics of the discretized excitation spectra inside a moving vortex core in layered superconductors with impurities. The universal conductivity is evaluated numerically for the various values of rescaled vortex velocities κ\kappa from the clean case to the dirty limit case. The random matrix theoretical prediction is verified numerically in the large κ\kappa regime. On the contrary in the low velocity regime, we observe σxxκ2/3\sigma_{xx} \propto \kappa^{2/3} which is consistent with the theoretical result for the super-clean case, where the energy dissipation is due to the Landau-Zener transition which takes place at the points called ``avoided crossing''.Comment: 10 pages, 4 figures, REVTeX3.

    Spectral form factor in a random matrix theory

    Full text link
    In the theory of disordered systems the spectral form factor S(τ)S(\tau), the Fourier transform of the two-level correlation function with respect to the difference of energies, is linear for τ<τc\tau<\tau_c and constant for τ>τc\tau>\tau_c. Near zero and near τc\tau_c its exhibits oscillations which have been discussed in several recent papers. In the problems of mesoscopic fluctuations and quantum chaos a comparison is often made with random matrix theory. It turns out that, even in the simplest Gaussian unitary ensemble, these oscilllations have not yet been studied there. For random matrices, the two-level correlation function ρ(λ1,λ2)\rho(\lambda_1,\lambda_2) exhibits several well-known universal properties in the large N limit. Its Fourier transform is linear as a consequence of the short distance universality of ρ(λ1,λ2)\rho(\lambda_1,\lambda_2). However the cross-over near zero and τc\tau_c requires to study these correlations for finite N. For this purpose we use an exact contour-integral representation of the two-level correlation function which allows us to characterize these cross-over oscillatory properties. The method is also extended to the time-dependent case.Comment: 36P, (+5 figures not included

    Non-universal corrections to the level curvature distribution beyond random matrix theory

    Full text link
    The level curvature distribution function is studied beyond the random matrix theory for the case of T-breaking perturbations over the orthogonal ensemble. The leading correction to the shape of the level curvature distribution is calculated using the nonlinear sigma-model. The sign of the correction depends on the presence or absence of the global gauge invariance and is different for perturbations caused by the constant vector-potential and by the random magnetic field. Scaling arguments are discussed that indicate on the qualitative difference in the level statistics in the dirty metal phase for space dimensionalities d4d4.Comment: 4 pages, Late

    Universality of Parametric Spectral Correlations: Local versus Extended Perturbing Potentials

    Full text link
    We explore the influence of an arbitrary external potential perturbation V on the spectral properties of a weakly disordered conductor. In the framework of a statistical field theory of a nonlinear sigma-model type we find, depending on the range and the profile of the external perturbation, two qualitatively different universal regimes of parametric spectral statistics (i.e. cross-correlations between the spectra of Hamiltonians H and H+V). We identify the translational invariance of the correlations in the space of Hamiltonians as the key indicator of universality, and find the connection between the coordinate system in this space which makes the translational invariance manifest, and the physically measurable properties of the system. In particular, in the case of localized perturbations, the latter turn out to be the eigenphases of the scattering matrix for scattering off the perturbing potential V. They also have a purely statistical interpretation in terms of the moments of the level velocity distribution. Finally, on the basis of this analysis, a set of results obtained recently by the authors using random matrix theory methods is shown to be applicable to a much wider class of disordered and chaotic structures.Comment: 16 pages, 7 eps figures (minor changes and reference [17] added

    Sensitivity to perturbations in a quantum chaotic billiard

    Full text link
    The Loschmidt echo (LE) measures the ability of a system to return to the initial state after a forward quantum evolution followed by a backward perturbed one. It has been conjectured that the echo of a classically chaotic system decays exponentially, with a decay rate given by the minimum between the width Γ\Gamma of the local density of states and the Lyapunov exponent. As the perturbation strength is increased one obtains a cross-over between both regimes. These predictions are based on situations where the Fermi Golden Rule (FGR) is valid. By considering a paradigmatic fully chaotic system, the Bunimovich stadium billiard, with a perturbation in a regime for which the FGR manifestly does not work, we find a cross over from Γ\Gamma to Lyapunov decay. We find that, challenging the analytic interpretation, these conjetures are valid even beyond the expected range.Comment: Significantly revised version. To appear in Physical Review E Rapid Communication

    Environment-independent decoherence rate in classically chaotic systems

    Full text link
    We study the decoherence of a one-particle system, whose classical correpondent is chaotic, when it evolves coupled to a weak quenched environment. This is done by analytical evaluation of the Loschmidt Echo, (i.e. the revival of a localized density excitation upon reversal of its time evolution), in presence of the perturbation. We predict an exponential decay for the Loschmidt Echo with a (decoherence) rate which is asymptotically given by the mean Lyapunov exponent of the classical system, and therefore independent of the perturbation strength, within a given range of strengths. Our results are consistent with recent experiments of Polarization Echoes in nuclear magnetic resonance and preliminary numerical simulations.Comment: No figures. Typos corrected and minor modifications to the text and references. Published versio

    Measuring the Lyapunov exponent using quantum mechanics

    Full text link
    We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional dynamical system.Comment: 9 pages, 6 figure

    Universality in quantum parametric correlations

    Full text link
    We investigate the universality of correlation functions of chaotic and disordered quantum systems as an external parameter is varied. A new, general scaling procedure is introduced which makes the theory invariant under reparametrizations. Under certain general conditions we show that this procedure is unique. The approach is illustrated with the particular case of the distribution of eigenvalue curvatures. We also derive a semiclassical formula for the non-universal scaling factor, and give an explicit expression valid for arbitrary deformations of a billiard system.Comment: LaTeX, 10 pages, 2 figures. Revised version, to appear in PR
    corecore