7,469 research outputs found

    Instanton Expansion of Noncommutative Gauge Theory in Two Dimensions

    Full text link
    We show that noncommutative gauge theory in two dimensions is an exactly solvable model. A cohomological formulation of gauge theory defined on the noncommutative torus is used to show that its quantum partition function can be written as a sum over contributions from classical solutions. We derive an explicit formula for the partition function of Yang-Mills theory defined on a projective module for arbitrary noncommutativity parameter \theta which is manifestly invariant under gauge Morita equivalence. The energy observables are shown to be smooth functions of \theta. The construction of noncommutative instanton contributions to the path integral is described in some detail. In general, there are infinitely many gauge inequivalent contributions of fixed topological charge, along with a finite number of quantum fluctuations about each instanton. The associated moduli spaces are combinations of symmetric products of an ordinary two-torus whose orbifold singularities are not resolved by noncommutativity. In particular, the weak coupling limit of the gauge theory is independent of \theta and computes the symplectic volume of the moduli space of constant curvature connections on the noncommutative torus.Comment: 52 pages LaTeX, 1 eps figure, uses espf. V2: References added and repaired; V3: Typos corrected, some clarifying explanations added; version to be published in Communications in Mathematical Physic

    Wilson Loops and Area-Preserving Diffeomorphisms in Twisted Noncommutative Gauge Theory

    Get PDF
    We use twist deformation techniques to analyse the behaviour under area-preserving diffeomorphisms of quantum averages of Wilson loops in Yang-Mills theory on the noncommutative plane. We find that while the classical gauge theory is manifestly twist covariant, the holonomy operators break the quantum implementation of the twisted symmetry in the usual formal definition of the twisted quantum field theory. These results are deduced by analysing general criteria which guarantee twist invariance of noncommutative quantum field theories. From this a number of general results are also obtained, such as the twisted symplectic invariance of noncommutative scalar quantum field theories with polynomial interactions and the existence of a large class of holonomy operators with both twisted gauge covariance and twisted symplectic invariance.Comment: 23 page

    Scalable Task-Based Algorithm for Multiplication of Block-Rank-Sparse Matrices

    Full text link
    A task-based formulation of Scalable Universal Matrix Multiplication Algorithm (SUMMA), a popular algorithm for matrix multiplication (MM), is applied to the multiplication of hierarchy-free, rank-structured matrices that appear in the domain of quantum chemistry (QC). The novel features of our formulation are: (1) concurrent scheduling of multiple SUMMA iterations, and (2) fine-grained task-based composition. These features make it tolerant of the load imbalance due to the irregular matrix structure and eliminate all artifactual sources of global synchronization.Scalability of iterative computation of square-root inverse of block-rank-sparse QC matrices is demonstrated; for full-rank (dense) matrices the performance of our SUMMA formulation usually exceeds that of the state-of-the-art dense MM implementations (ScaLAPACK and Cyclops Tensor Framework).Comment: 8 pages, 6 figures, accepted to IA3 2015. arXiv admin note: text overlap with arXiv:1504.0504

    Method of extending hyperfine coherence times in Pr^3+:Y_2SiO_5

    Full text link
    In this letter we present a method for increasing the coherence time of praseodymium hyperfine ground state transitions in Pr^3+:Y_2SiO_5 by the application of a specific external magnetic field. The magnitude and angle of the external field is applied such that the Zeeman splitting of a hyperfine transition is at a critical point in three dimensions, making the first order Zeeman shift vanishingly small for the transition. This reduces the influence of the magnetic interactions between the praseodymium ions and the spins in the host lattice on the transition frequency. Using this method a phase memory time of 82ms was observed, a value two orders of magnitude greater than previously reported. It is shown that the residual dephasing is amenable quantum error correction

    Proof of Kolmogorovian Censorship

    Get PDF
    Many argued (Accardi and Fedullo, Pitowsky) that Kolmogorov's axioms of classical probability theory are incompatible with quantum probabilities, and this is the reason for the violation of Bell's inequalities. Szab\'o showed that, in fact, these inequalities are not violated by the experimentally observed frequencies if we consider the real, ``effective'' frequencies. We prove in this work a theorem which generalizes this result: ``effective'' frequencies associated to quantum events always admit a Kolmogorovian representation, when these events are collected through different experimental set ups, the choice of which obeys a classical distribution.Comment: 19 pages, LaTe
    • …
    corecore