142 research outputs found

    Radio Astronomy

    Get PDF
    Contains reports on research objectives and eight research projects.National Science Foundation (Grant AST79-25075)National Science Foundation (Grant AST79-20984)National Science Foundation (Grant AST79-19553)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0348)National Aeronautics and Space Administration (Grant NAG2-50)M.I.T. Sloan Fund for Basic ResearchJoint Services Electronics Program (Contract DAAG29-78-C-0020)Joint Services Electronics Program (Contract DAAG29-80-C-0104)National Aeronautics and Space Administration (Grant NAG5-10)National Aeronautics and Space Administration (Contract NAS5-25091)National Aeronautics and Space Administration (Contract NAS5-22929)U.S. Department of Commerce - National Oceanic and Atmospheric Administration (Grant 04-8-MOl-1

    Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay

    Get PDF
    INTRODUCTION: Predicting the clinical course of breast cancer is often difficult because it is a diverse disease comprised of many biological subtypes. Gene expression profiling by microarray analysis has identified breast cancer signatures that are important for prognosis and treatment. In the current article, we use microarray analysis and a real-time quantitative reverse-transcription (qRT)-PCR assay to risk-stratify breast cancers based on biological 'intrinsic' subtypes and proliferation. METHODS: Gene sets were selected from microarray data to assess proliferation and to classify breast cancers into four different molecular subtypes, designated Luminal, Normal-like, HER2+/ER-, and Basal-like. One-hundred and twenty-three breast samples (117 invasive carcinomas, one fibroadenoma and five normal tissues) and three breast cancer cell lines were prospectively analyzed using a microarray (Agilent) and a qRT-PCR assay comprised of 53 genes. Biological subtypes were assigned from the microarray and qRT-PCR data by hierarchical clustering. A proliferation signature was used as a single meta-gene (log(2 )average of 14 genes) to predict outcome within the context of estrogen receptor status and biological 'intrinsic' subtype. RESULTS: We found that the qRT-PCR assay could determine the intrinsic subtype (93% concordance with microarray-based assignments) and that the intrinsic subtypes were predictive of outcome. The proliferation meta-gene provided additional prognostic information for patients with the Luminal subtype (P = 0.0012), and for patients with estrogen receptor-positive tumors (P = 3.4 × 10(-6)). High proliferation in the Luminal subtype conferred a 19-fold relative risk of relapse (confidence interval = 95%) compared with Luminal tumors with low proliferation. CONCLUSION: A real-time qRT-PCR assay can recapitulate microarray classifications of breast cancer and can risk-stratify patients using the intrinsic subtype and proliferation. The proliferation meta-gene offers an objective and quantitative measurement for grade and adds significant prognostic information to the biological subtypes

    Radio Astronomy

    Get PDF
    Contains table of contents and reports on seven research projects.National Science Foundation (Grant AST 86-17172)National Aeronautics and Space AdministrationJet Propulsion LaboratoryNASA/Goddard Space Flight Center (Grant NAG5-10)SM Systems and Research, Inc.U.S. Navy Office of Naval Research (Contract N00014-86-C-2114)Center for Advanced Television StudiesNASA/Goddard Space Flight Center (Grant NAG5-537

    Radio Astronomy

    Get PDF
    Contains reports on nine research projects.National Science Foundation (Grant AST 86-17172)National Aeronautics and Space Administration (Contract NAS7-918)Jet Propulsion Laboratory (Contract 958048)U.S. Navy - Office of Naval Research (Contract N00014-84-C-2082)U.S. Navy - Office of Naval Research (Contract N00014-86-C-2114)SM Systems and Research, Inc.National Aeronautics and Space Administration/Goddard Space Flight Center (Grant NAG5-10)Center for Advanced Television StudiesBrazil, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Grant 300.832-82)National Aeronautics and Space Administration/Goddard Space Flight Center (Grant NAG5-537

    Cognitive Information Processing

    Get PDF
    Contains goals, background, research activities on one research project and reports on three research projects.Center for Advanced Television StudiesAmerican Broadcasting CompanyAmpex CorporationColumbia Broadcasting SystemsHarris CorporationHome Box OfficePublic Broadcasting ServiceNational Broadcasting CompanyRCA CorporationTektronix3M CompanyProvidence Gravure Co. (Grant)International Business Machines, Inc

    Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers

    Get PDF
    Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07–1.25, P-trend = 2.8 × 10−4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04–1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04–1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98–1.14) was consistent with odds ratio estimates derived from population-based case–control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not

    Sphingomyelin Functions as a Novel Receptor for Helicobacter pylori VacA

    Get PDF
    The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells

    Effect of cholesterol on the dipole potential of lipid membranes

    Get PDF
    The membrane dipole potential, ψd, is an electrical potential difference with a value typically in the range 150 – 350 mV (positive in the membrane interior) which is located in the lipid headgroup region of the membrane, between the linkage of the hydrocarbon chains to the phospholipid glycerol backbone and the adjacent aqueous solution. At its physiological level in animal plasma membranes (up to 50 mol%), cholesterol makes a significant contribution to ψd of approximately 65 mV; the rest arising from other lipid components of the membrane, in particular phospholipids. Via its effect on ψd, cholesterol may modulate the activity of membrane proteins. This could occur through preferential stabilization of protein conformational states. Based on its effect on ψd, cholesterol would be expected to favour protein conformations associated with a small local hydrophobic membrane thickness. Via its membrane condensing effect, which also produces an increase in ψd, cholesterol could further modulate interactions of polybasic cytoplasmic extensions of membrane proteins, in particular P-type ATPases, with anionic lipid headgroups on the membrane surface, thus leading to enhanced conformational stabilization effects and changes to ion pumping activity.Australian Research Counci

    Common breast cancer susceptibility alleles are associated with tumor subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2.

    Get PDF

    Definitions and pathophysiology of vasoplegic shock.

    Get PDF
    Vasoplegia is the syndrome of pathological low systemic vascular resistance, the dominant clinical feature of which is reduced blood pressure in the presence of a normal or raised cardiac output. The vasoplegic syndrome is encountered in many clinical scenarios, including septic shock, post-cardiac bypass and after surgery, burns and trauma, but despite this, uniform clinical definitions are lacking, which renders translational research in this area challenging. We discuss the role of vasoplegia in these contexts and the criteria that are used to describe it are discussed. Intrinsic processes which may drive vasoplegia, such as nitric oxide, prostanoids, endothelin-1, hydrogen sulphide and reactive oxygen species production, are reviewed and potential for therapeutic intervention explored. Extrinsic drivers, including those mediated by glucocorticoid, catecholamine and vasopressin responsiveness of the blood vessels, are also discussed. The optimum balance between maintaining adequate systemic vascular resistance against the potentially deleterious effects of treatment with catecholamines is as yet unclear, but development of novel vasoactive agents may facilitate greater understanding of the role of the differing pathways in the development of vasoplegia. In turn, this may provide insights into the best way to care for patients with this common, multifactorial condition
    • …
    corecore