772 research outputs found

    Theory of a two-level artificial molecule in laterally coupled quantum Hall droplets

    Full text link
    We present a theory of laterally coupled quantum Hall droplets with electron numbers (N1,N2) at filling factor ν=2\nu=2. We show that the edge states of each droplet are tunnel coupled and form a two-level artificial molecule. By populating the edge states with one electron each a two electron molecule is formed. We predict the singlet-triplet transitions of the effective two-electron molecule as a function of the magnetic field, the number of electrons, and confining potential using the configuration interaction method (CI) coupled with the unrestricted Hartree-Fock (URHF) basis. In addition to the singlet-triplet transitions of a 2 electron molecule involving edge states, triplet transitions involving transfer of electrons to the center of individual dots exist for (N15,N25)(N1 \geq 5, N2 \geq 5).Comment: 5 pages, 10 figure

    Scaling in the correlation energies of two-dimensional artificial atoms

    Full text link
    We find an unexpected scaling in the correlation energy of artificial atoms, i.e., harmonically confined two-dimensional quantum dots. The scaling relation is found through extensive numerical examinations including Hartree-Fock, variational quantum Monte Carlo, density-functional, and full configuration-interaction calculations. We show that the correlation energy, i.e., the true ground-state total energy subtracted by the Hartree-Fock total energy, follows a simple function of the Coulomb energy, confimenent strength and, the number of electrons. We find an analytic expression for this function, as well as for the correlation energy per particle and for the ratio between the correlation and total energies. Our tests for independent diffusion Monte Carlo and coupled-cluster results for quantum dots -- including open-shell data -- confirm the generality of the obtained scaling. As the scaling is also well applicable to \gtrsim 100 electrons, our results give interesting prospects for the development of correlation functionals within density-functional theory.Comment: Accepted to Journal of Physics: Condensed Matte

    Bardoxolone methyl prevents the development and progression of cardiac and renal pathophysiologies in mice fed a high-fat diet

    Get PDF
    Obesity caused by the consumption of a high-fat (HF) diet is a major risk factor for the development of associated complications, such as heart and kidney failure. A semi-synthetic triterpenoid, bardoxolone methyl (BM) was administrated to mice fed a HF diet for 21 weeks to determine if it would prevent the development of obesity-associated cardiac and renal pathophysiologies. Twelve week old male C57BL/6J mice were fed a lab chow (LC), HF (40% fat), or a HF diet supplemented with 10 mg/kg/day BM in drinking water. After 21 weeks, the left ventricles of hearts and cortex of kidneys of mice were collected for analysis. Histological analysis revealed that BM prevented HF diet-induced development of structural changes in the heart and kidneys. BM prevented HF diet-induced decreases in myocyte number in cardiac tissue, although this treatment also elevated cardiac endothelin signalling molecules. In the kidneys, BM administration prevented HF diet-induced renal corpuscle hypertrophy and attenuated endothelin signalling. Furthermore, in both the hearts and kidneys of mice fed a HF diet, BM administration prevented HF diet-induced increases in fat accumulation, macrophage infiltration and tumour necrosis factor alpha (TNFα) gene expression. These findings suggest that BM prevents HF diet-induced developments of cardiac and renal pathophysiologies in mice fed a chronic HF diet by preventing inflammation. Moreover, these results suggest that BM has the potential as a therapeutic for preventing obesity-induced cardiac and renal pathophysiologies

    A Phase I Trial of Aminolevulinic Acid-Photodynamic Therapy for Treatment of Oral Leukoplakia

    Get PDF
    Background Photodynamic therapy with aminolevulinic acid (ALA PDT) for oral leukoplakia has shown promising effects in regression of oral leukoplakia. Although ALA has been extensively studied and is an ideal photosensitizer, the optimal light dose for treatment of oral leukoplakia has not been determined. We conducted a phase I study to determine MTD and DLT of PDT in patients treated with ALA for leukoplakia. Methods Patients with histologically confirmed oral leukoplakia received a single treatment of ALA PDT in cohorts with escalating doses of light (585 nm). Clinical, histologic, and biologic markers were assessed. Results Analysis of 11 participants is reported. No significant toxicity from ALA PDT was observed in patients who received ALA with a light dose of up to 4 J/cm2. One participant experienced transient grade 3 transaminase elevation due to ALA. One participant had a partial clinical response 3 months after treatment. Biologic mucosal risk markers showed no significant associations. Determination of MTD could not be accomplished within a feasible timeframe for completion of the study. Conclusions ALA PDT could be safely administered with a light dose up to 4 J/cm2 and demonstrated activity. Larger studies are needed to fully elucidate the MTD and efficacy of ALA-PDT

    Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes

    Full text link
    In this article we study the quantization of a free real scalar field on a class of noncommutative manifolds, obtained via formal deformation quantization using triangular Drinfel'd twists. We construct deformed quadratic action functionals and compute the corresponding equation of motion operators. The Green's operators and the fundamental solution of the deformed equation of motion are obtained in terms of formal power series. It is shown that, using the deformed fundamental solution, we can define deformed *-algebras of field observables, which in general depend on the spacetime deformation parameter. This dependence is absent in the special case of Killing deformations, which include in particular the Moyal-Weyl deformation of the Minkowski spacetime.Comment: LaTeX 14 pages, no figures, svjour3.cls style; v2: clarifications and references added, compatible with published versio

    Cosmological perturbations and short distance physics from Noncommutative Geometry

    Get PDF
    We investigate the possible effects on the evolution of perturbations in the inflationary epoch due to short distance physics. We introduce a suitable non local action for the inflaton field, suggested by Noncommutative Geometry, and obtained by adopting a generalized star product on a Friedmann-Robertson-Walker background. In particular, we study how the presence of a length scale where spacetime becomes noncommutative affects the gaussianity and isotropy properties of fluctuations, and the corresponding effects on the Cosmic Microwave Background spectrum.Comment: Published version, 16 page

    Analytical results for random walks in the presence of disorder and traps

    Full text link
    In this paper, we study the dynamics of a random walker diffusing on a disordered one-dimensional lattice with random trappings. The distribution of escape probabilities is computed exactly for any strength of the disorder. These probabilities do not display any multifractal properties contrary to previous numerical claims. The explanation for this apparent multifractal behavior is given, and our conclusion are supported by numerical calculations. These exact results are exploited to compute the large time asymptotics of the survival probability (or the density) which is found to decay as exp[Ct1/3log2/3(t)]\exp [-Ct^{1/3}\log^{2/3}(t)]. An exact lower bound for the density is found to decay in a similar way.Comment: 21 pages including 3 PS figures. Submitted to Phys. Rev.

    Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    Get PDF
    The data set supporting the results of this article is available in the Dryad repository, http://dx.doi.org/10.5061/dryad.6f4qs. Moustakas, A. and Evans, M. R. (2015) Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values.Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose

    Numerical atomic orbitals for linear scaling

    Full text link
    The performance of basis sets made of numerical atomic orbitals is explored in density-functional calculations of solids and molecules. With the aim of optimizing basis quality while maintaining strict localization of the orbitals, as needed for linear-scaling calculations, several schemes have been tried. The best performance is obtained for the basis sets generated according to a new scheme presented here, a flexibilization of previous proposals. The basis sets are tested versus converged plane-wave calculations on a significant variety of systems, including covalent, ionic and metallic. Satisfactory convergence (deviations significantly smaller than the accuracy of the underlying theory) is obtained for reasonably small basis sizes, with a clear improvement over previous schemes. The transferability of the obtained basis sets is tested in several cases and it is found to be satisfactory as well.Comment: 9 pages with 2 encapsulated postscript figures, submitted to Phys. Rev.
    corecore